首页> 外文期刊>Mathematical notes >Representations of the Klein Group Determined by Quadruples of Polynomials Associated with the Double Confluent Heun Equation
【24h】

Representations of the Klein Group Determined by Quadruples of Polynomials Associated with the Double Confluent Heun Equation

机译:由与双合流Heun方程相关的多项式的四倍确定的Klein群的表示

获取原文
获取原文并翻译 | 示例

摘要

The canonical representation of the Klein group K ~(4)= ℤ~(2)⊕ℤ~(2)on the space ℂ* = ℂ {0} induces a representation of this group on the ring L = C [z, z_(−1)], z ∈ ℂ*, of Laurent polynomials and, as a consequence, a representation of the group K ~(4)on the automorphism group of the group G = GL (4, L ) by means of the elementwise action. The semidirect product Ĝ G = G K ~(4)is considered together with a realization of the group Ĝ as a group of semilinear automorphisms of the free 4-dimensional L -module M _(4). A three-parameter family of representations R of K ~(4)in the group Ĝ and a three-parameter family of elements X ∈ M _(4)with polynomial coordinates of degrees 2( ℓ − 1), 2 ℓ , 2( ℓ − 1), and 2 ℓ , where ℓ is an arbitrary positive integer (one of the three parameters), are constructed. It is shown that, for any given family of parameters, the vector X is a fixed point of the corresponding representation R. An algorithm for calculating the polynomials that are the components of X was obtained in a previous paper of the authors, in which it was proved that these polynomials give explicit formulas for automorphisms of the solution space of the doubly confluent Heun equation.
机译:空间ℂ* =ℂ{0}上的Klein群K〜(4)=ℤ〜(2)⊕ℤ〜(2)的规范表示引起了该组在环L = C上的表示[z,z_ (−1)],Laurent多项式的z∈∈*,因此,通过元素法表示了G = GL(4,L)的自同构群上的K〜(4)。行动。将半直接乘积ĜG = G K〜(4)连同组Ĝ的实现一起考虑为自由4维L-模M_(4)的一组半线性自同构。 Ĝ组中K〜(4)的三参数表示族R和元素X∈M _(4)的三参数族,其多项式坐标为2(ℓ− 1),2ℓ,2( ℓ− 1)和2ℓ(其中ℓ是任意正整数(三个参数之一))被构造。结果表明,对于任何给定的参数族,向量X都是对应表示R的一个固定点。作者的先前论文中获得了一种计算作为X的组成部分的多项式的算法,其中证明了这些多项式为双融合Heun方程解空间的自同构给出了明确的公式。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号