首页> 外文期刊>IEEE transactions on components, packaging, and manufacturing technology. Part C, Manufacturing >Use of neural networks in modeling relations between exposure energy and pattern dimension in photolithography process [MOS ICs]
【24h】

Use of neural networks in modeling relations between exposure energy and pattern dimension in photolithography process [MOS ICs]

机译:神经网络在光刻工艺[MOS IC]中的曝光能量和图案尺寸之间的关系建模中的应用

获取原文
获取原文并翻译 | 示例

摘要

The photolithography process is one of the most complex operations in semiconductor production. Exposure energy definition is particularly critical because it strongly affects the operation results. Very complex links exist between exposure energy, pattern critical dimensions, photo resist thickness, and resistivity. At present, the wafer test experimental procedure is used in order to define suitable exposure energy. With the aim of finding a less expensive control criterion of exposure operation in the photolithography process, a neural network has been developed that is able to model the relation between exposure energy and pattern dimensions measured in different positions on the wafer. As a result, the neural network model developed has been found to perform as well as the very expensive test wafer procedure and constitutes a good alternative to this one, allowing for a remarkable cost reduction.
机译:光刻工艺是半导体生产中最复杂的操作之一。曝光能量定义特别重要,因为它会严重影响操作结果。曝光能量,图案临界尺寸,光刻胶厚度和电阻率之间存在非常复杂的联系。目前,为了确定合适的曝光能量,使用了晶片测试实验程序。为了找到光刻过程中曝光操作的较便宜的控制标准,已开发了一种神经网络,该神经网络能够对曝光能量与在晶片上不同位置测得的图案尺寸之间的关系进行建模。结果,发现开发的神经网络模型可以执行非常昂贵的测试晶圆程序,并且可以很好地替代此方法,从而可以显着降低成本。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号