首页> 外文期刊>Knowledge-Based Systems >Improving the robustness of machine reading comprehension model with hierarchical knowledge and auxiliary unanswerability prediction
【24h】

Improving the robustness of machine reading comprehension model with hierarchical knowledge and auxiliary unanswerability prediction

机译:用分层知识和辅助不辨认预测提高机器阅读理解模型的鲁棒性

获取原文
获取原文并翻译 | 示例

摘要

Machine Reading Comprehension (MRC) aims to understand a passage and answer a series of related questions. With the development of deep learning and the release of large-scale MRC datasets, many end-to-end MRC neural networks have achieved remarkable success. However, these models are fragile and lack of robustness when there are some imperceptible adversarial perturbations in the input. In this paper, we propose an MRC model which has two main components to improve the robustness. On the one hand, we enhance the representation of the model by leveraging hierarchical knowledge from external knowledge bases. On the other hand, we introduce an auxiliary unanswerability prediction module and perform supervised multi-task learning along with a span prediction task. Experimental results on benchmark datasets show that our model can achieve consistent improvement compared with other strong baselines. (C) 2020 Elsevier B.V. All rights reserved.
机译:机器阅读理解(MRC)旨在了解一段段落并回答一系列相关问题。随着深度学习的发展和大型MRC数据集的发布,许多端到端的MRC神经网络取得了显着的成功。然而,当输入中存在一些难以察觉的对抗性扰动时,这些模型是脆弱的并且缺乏鲁棒性。在本文中,我们提出了一个MRC模型,具有两个主要组成部分来提高鲁棒性。一方面,我们通过利用外部知识库的分层知识来增强模型的表示。另一方面,我们介绍辅助不可批准的预测模块,并与跨度预测任务一起执行监督的多任务学习。基准数据集的实验结果表明,与其他强基线相比,我们的模型可以实现一致的改进。 (c)2020 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号