首页> 外文期刊>Knowledge-Based Systems >An efficient surrogate-assisted quasi-affine transformation evolutionary algorithm for expensive optimization problems
【24h】

An efficient surrogate-assisted quasi-affine transformation evolutionary algorithm for expensive optimization problems

机译:昂贵优化问题的高效替代辅助准仿射转换算法

获取原文
获取原文并翻译 | 示例

摘要

Many real-world engineering optimization problems usually need a lot of time for function evaluations or have massive decision variables. It is still a big challenge to address these problems effectively. Recently, surrogate-assisted meta-heuristic algorithms have drawn increasing attention, and have shown their potential to deal with such expensive complex optimization problems. In this study, a surrogate-assisted quasi-affine transformation evolutionary (SA-QUATRE) algorithm is proposed to further enhance the optimization efficiency and effectiveness. In SA-QUATRE, the global and the local surrogate models are effectively combined for fitness estimation. The global surrogate model is built based on all data in the database for global exploration. While, the local surrogate model is constructed with a predefined number of top best samples for local exploitation. Meanwhile, both the generation- and individual-based evolution controls as well as a top best restart strategy are incorporated in the global and the local searches. To enhance the exploration and the exploitation capabilities, the global search uses the mean of the population to be evaluated with the expensive real fitness function, while the local search chooses the individual with the best fitness according to the surrogate for real evaluation. The proposed SA-QUATRE is compared with five state-of-the-art optimization approaches over seven commonly used benchmark functions with dimensions varying from 10 to 100. Moreover, the proposed SA-QUATRE is also applied to solve the tension/compression spring design problem. The experimental results show that SA-QUATRE is promising for optimizing computationally expensive problems. (C) 2020 Elsevier B.V. All rights reserved.
机译:许多真实世界的工程优化问题通常需要很多时间进行功能评估或具有大规模的决策变量。有效解决这些问题仍然是一个很大的挑战。最近,替代辅助元启发式算法已经引起了越来越关注,并且已经表明他们处理如此昂贵的复杂优化问题。在该研究中,提出了一种替代辅助准仿射变换进化(SA-QUATRE)算法,以进一步提高优化效率和有效性。在SA-QUATRE中,全局和当地代理模型得到有效地组合用于健身估计。全局代理模型基于数据库中的所有数据进行全局探索构建。虽然,本地代理模型由预定数量的最佳样本构建,用于本地剥削。同时,基于生成和基于个人的演化控制以及最佳重启策略都包含在全局和本地搜索中。为了增强勘探和开发能力,全球搜索使用昂贵的真实健身功能来评估人口的平均值,而当地搜索选择具有最佳健身的个体,根据代理进行真实评估。该提议的SA-Quatre与五种常用的基准功能的五个常用的基准功能进行比较,尺寸从10到100变化。此外,建议的Sa-Quatre也应用于解决张力/压缩弹簧设计问题。实验结果表明,SA-Quatre是优化计算昂贵的问题的承诺。 (c)2020 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号