首页> 外文期刊>Knowledge-Based Systems >A constrained differential evolution algorithm to solve UAV path planning in disaster scenarios
【24h】

A constrained differential evolution algorithm to solve UAV path planning in disaster scenarios

机译:一种受约束差分演化算法来解决灾难场景中的UAV路径规划

获取原文
获取原文并翻译 | 示例

摘要

Disasters have caused significant losses to humans in the past decades. It is essential to learn about the disaster situation so that rescue works can be conducted as soon as possible. Unmanned aerial vehicle (UAV) is a very useful and effective tool to improve the capacity of disaster situational awareness for responders. In the paper, UAV path planning is modelled as the optimization problem, in which fitness functions include travelling distance and risk of UAV, three constraints involve the height of UAV, angle of UAV, and limited UAV slope. An adaptive selection mutation constrained differential evolution algorithm is put forward to solve the problem. In the proposed algorithm, individuals are selected depending on their fitness values and constraint violations. The better the individual is, the higher the chosen probability it has. These selected individuals are used to make mutation, and the algorithm searches around the best individual among the selected individuals. The well-designed mechanism improves the exploitation and maintains the exploration. The experimental results have indicated that the proposed algorithm is competitive compared with the state-of-art algorithms, which makes it more suitable in the disaster scenario. (C) 2020 Elsevier B.V. All rights reserved.
机译:灾害在过去几十年中对人类造成了重大损失。必须了解灾难情况,以便尽快进行救援工作。无人驾驶飞行器(UAV)是一种非常有用且有效的工具,可以提高灾害情境对响应者的认识能力。在本文中,UAV路径规划被建模为优化问题,其中健身功能包括旅行距离和UAV的风险,三个约束涉及UV,UV的高度,和UAV的角度和有限的UAV斜率。提出了一种自适应选择突变约束差分演化算法来解决问题。在所提出的算法中,根据其健身值和约束违规选择各个。个人是越好,所选择的概率越高。这些所选个人用于制作突变,并且算法在所选人物中搜索最佳个体。精心设计的机制可提高剥削并保持勘探。实验结果表明,与最先进的算法相比,所提出的算法具有竞争力,这使得它更适合灾害场景。 (c)2020 Elsevier B.v.保留所有权利。

著录项

  • 来源
    《Knowledge-Based Systems》 |2020年第27期|106209.1-106209.11|共11页
  • 作者单位

    Nanjing Univ Informat Sci & Technol Minist Educ Key Lab Meteorol Disaster KLME Nanjing Peoples R China|Nanjing Univ Informat Sci & Technol Collaborat Innovat Ctr Forecast & Evaluat Meteoro Nanjing Peoples R China|Nanjing Univ Informat Sci & Technol Sch Management Sci & Engn Nanjing Peoples R China;

    Nanjing Univ Informat Sci & Technol Sch Management Sci & Engn Nanjing Peoples R China;

    Nanjing Univ Informat Sci & Technol Sch Management Sci & Engn Nanjing Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    UAV path planning; Disaster emergency management; Differential evolution algorithm; Constrained optimization;

    机译:UAV路径规划;灾难应急管理;差分演进算法;受限优化;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号