首页> 外文期刊>Knowledge-Based Systems >Intelligent fault diagnosis of rolling bearings based on normalized CNN considering data imbalance and variable working conditions
【24h】

Intelligent fault diagnosis of rolling bearings based on normalized CNN considering data imbalance and variable working conditions

机译:考虑数据不平衡和可变工作条件,基于归一化CNN的滚动轴承智能故障诊断

获取原文
获取原文并翻译 | 示例

摘要

Intelligent fault detection and diagnosis, as an important approach, play a crucial role in ensuring the stable, reliable and safe operation of rolling bearings, which is one of the most important components in the rotating machinery. In real industries, it is common to face that the issues of severe data imbalance and distribution difference since the number of fault data is small and the equipments frequently change the working conditions according to the production. To accurately and automatically identify the conditions of rolling bearings, a normalized convolutional neural network is proposed for the diagnosis of different fault seventies and orientations considering data imbalance and variable working conditions. First, the batch normalization is adopted as a novel application to eliminate feature distribution difference, which is the prerequisite for ensuring generalization ability under different working conditions. Then, a special model structure is established and the overall performances of the proposed model are optimized by iterative update, which combines the exponential moving average technology. Finally, the proposed model is applied to the fault diagnosis under different data imbalance cases and working conditions. The effectiveness of the proposed method is verified based on two popular experiment dataset, and the diagnosis performance is widely evaluated in different scenarios. Comparisons with other commonly used methods and related works on the same dataset demonstrate the superiority of the proposed method. The results show that the proposed method has excellent diagnosis accuracy and admirable robustness, and also has sufficient stability on the data imbalance. (C) 2020 Elsevier B.V. All rights reserved.
机译:智能故障检测和诊断作为一种重要的方法,在确保滚动轴承的稳定,可靠和安全的操作方面发挥至关重要的作用,这是旋转机械中最重要的部件之一。在真正的行业中,常见的是,由于故障数据的数量很小,因此严重数据不平衡和分布差异的问题且设备常常根据生产改变工作条件。为了准确和自动地识别滚动轴承的条件,提出了一种正常化的卷积神经网络,用于考虑数据不平衡和可变工作条件的不同故障七十和方向的诊断。首先,采用批量标准化作为消除特征分布差的新应用,这是确保在不同工作条件下的泛化能力的先决条件。然后,建立了特殊的模型结构,并且通过迭代更新优化了所提出的模型的总体性能,其结合了指数移动平均技术。最后,所提出的模型应用于不同数据不平衡案例和工作条件下的故障诊断。基于两个流行的实验数据集来验证所提出的方法的有效性,并且在不同场景中广泛评估诊断性能。与其他常用的方法和相关工程在同一数据集上的比较证明了所提出的方法的优越性。结果表明,该方法具有出色的诊断精度和令人钦佩的稳健性,并且对数据不平衡具有足够的稳定性。 (c)2020 Elsevier B.v.保留所有权利。

著录项

  • 来源
    《Knowledge-Based Systems》 |2020年第jul8期|105971.1-105971.16|共16页
  • 作者单位

    South China Univ Technol Sch Mech & Automot Engn Guangdong Key Lab Precis Equipment & Mfg Technol Guangzhou 510640 Peoples R China;

    South China Univ Technol Sch Mech & Automot Engn Guangdong Key Lab Precis Equipment & Mfg Technol Guangzhou 510640 Peoples R China;

    South China Univ Technol Sch Mech & Automot Engn Guangdong Key Lab Precis Equipment & Mfg Technol Guangzhou 510640 Peoples R China;

    South China Univ Technol Sch Mech & Automot Engn Guangdong Key Lab Precis Equipment & Mfg Technol Guangzhou 510640 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Rolling bearing; Fault diagnosis; Convolutional neural network; Deep learning; Data imbalance;

    机译:滚动轴承;故障诊断;卷积神经网络;深入学习;数据不平衡;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号