首页> 外文期刊>Neurocomputing >Deep multi-scale convolutional transfer learning network: A novel method for intelligent fault diagnosis of rolling bearings under variable working conditions and domains
【24h】

Deep multi-scale convolutional transfer learning network: A novel method for intelligent fault diagnosis of rolling bearings under variable working conditions and domains

机译:深度多尺度卷积转移学习网络:可变工作条件与域下滚动轴承智能故障诊断的新方法

获取原文
获取原文并翻译 | 示例

摘要

Intelligent fault detection and diagnosis, as an important approach, play a crucial role in ensuring the stable, reliable and safe operation of rolling bearings, which is one of the most main components in the rotating machinery. However, the data distribution shift is inevitable in the practical scene due to changes in internal and external environments, it is still challenging to establish an effective fault di-agnosis model that can eliminate the same distribution assumption. In light of the above demands, a novel transfer learning framework based on deep multi-scale convolutional neural network (MSCNN) is presented in this paper. First, a novel multi-scale module is ingenious established based on dilated convolution, which is used as the key part to obtain differential features through different perceptual fields. Then, in order to further reduce the complexity of the proposed model, a global average pooling technol-ogy is adopted to replace the traditional fully-connected layer. Finally, the architecture and weights of the MSCNN pre-trained on source domain are transferred to the other different but similar tasks with proper fine-tuning instead of training a network from scratch. The proposed MSCNN is evaluated by different transfer scenarios constructed on two famous rolling bearing test-bed. Three case studies show that the proposed framework not only has excellent performance on the source domain, but also has superior transferability on variable working conditions and domains. (C) 2020 Published by Elsevier B.V.
机译:智能故障检测和诊断作为一种重要的方法,在确保滚动轴承的稳定,可靠和安全的操作中发挥至关重要的作用,这是旋转机械中最具主要组件之一。然而,由于内部和外部环境的变化,在实际场景中,数据分布换档是不可避免的,建立一种能够消除相同分布假设的有效故障缺陷模型仍然具有挑战性。鉴于上述要求,本文提出了一种基于深度多尺度卷积神经网络(MSCNN)的新型转移学习框架。首先,基于扩张的卷积的新型多尺度模块是巧妙的建立,其用作通过不同的感知领域获得差异特征的关键部分。然后,为了进一步降低所提出的模型的复杂性,采用全局平均池技术汇编替换传统的全连接层。最后,在源域上预先训练的MSCNN的体系结构和权重被传送到其他不同但类似的任务,并且具有适当的微调,而不是从头开始训练网络。所提出的MSCNN由在两个着名的滚动轴承测试床上构建的不同传输场景进行评估。三个案例研究表明,所提出的框架不仅在源域上具有出色的性能,而且在可变工作条件和域上具有卓越的可转换性。 (c)2020由elsevier b.v发布。

著录项

  • 来源
    《Neurocomputing》 |2020年第24期|24-38|共15页
  • 作者单位

    South China Univ Technol Sch Mech & Automot Engn Guangdong Key Lab Precis Equipment & Mfg Technol Guangzhou 510640 Peoples R China;

    South China Univ Technol Sch Mech & Automot Engn Guangdong Key Lab Precis Equipment & Mfg Technol Guangzhou 510640 Peoples R China;

    South China Univ Technol Sch Mech & Automot Engn Guangdong Key Lab Precis Equipment & Mfg Technol Guangzhou 510640 Peoples R China;

    South China Univ Technol Sch Mech & Automot Engn Guangdong Key Lab Precis Equipment & Mfg Technol Guangzhou 510640 Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Rolling bearing; Fault diagnosis; Transfer learning; Multi-scale convolutional neural network; Global average pooling;

    机译:滚动轴承;故障诊断;转移学习;多尺度卷积神经网络;全球平均汇总;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号