首页> 外文期刊>Knowledge-Based Systems >dyngraph2vec: Capturing network dynamics using dynamic graph representation learning
【24h】

dyngraph2vec: Capturing network dynamics using dynamic graph representation learning

机译:dyngraph2vec:使用动态图表示学习来捕获网络动态

获取原文
获取原文并翻译 | 示例

摘要

Learning graph representations is a fundamental task aimed at capturing various properties of graphs in vector space. The most recent methods learn such representations for static networks. However, real-world networks evolve over time and have varying dynamics. Capturing such evolution is key to predicting the properties of unseen networks. To understand how the network dynamics affect the prediction performance, we propose an embedding approach which learns the structure of evolution in dynamic graphs and can predict unseen links with higher precision. Our model, dyngraph2vec, learns the temporal transitions in the network using a deep architecture composed of dense and recurrent layers. We motivate the need for capturing dynamics for the prediction on a toy dataset created using stochastic block models. We then demonstrate the efficacy of dyngraph2vec over existing state-of-the-art methods on two real-world datasets. We observe that learning dynamics can improve the quality of embedding and yield better performance in link prediction. (C) 2019 Elsevier B.V. All rights reserved.
机译:学习图形表示是一项基本任务,旨在捕获向量空间中图形的各种属性。最新的方法学习静态网络的这种表示。但是,现实世界的网络会随着时间的推移而发展并具有变化的动态。捕获这样的演变是预测看不见的网络的属性的关键。为了了解网络动力学如何影响预测性能,我们提出了一种嵌入方法,该方法可以学习动态图的演化结构,并可以更高精度地预测看不见的链接。我们的模型dyngraph2vec使用由密集层和循环层组成的深度架构来学习网络中的时间转换。我们激发了为使用随机块模型创建的玩具数据集捕获动态以进行预测的需求。然后,我们在两个真实的数据集上证明dyngraph2vec优于现有的最新方法的功效。我们观察到学习动态可以提高嵌入质量并在链接预测中产生更好的性能。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号