首页> 外文期刊>Quality Control, Transactions >Research on the Link Prediction Model of Dynamic Multiplex Social Network Based on Improved Graph Representation Learning
【24h】

Research on the Link Prediction Model of Dynamic Multiplex Social Network Based on Improved Graph Representation Learning

机译:基于改进图形表示学习的动态多路复用社交网络链路预测模型研究

获取原文
获取原文并翻译 | 示例

摘要

In the natural and social systems of the real world, various network can be seen everywhere. The world where people live can be seen as a combination of network with different dimensions. Link prediction formalizes the interaction behavior between people. Traditional link prediction methods mainly study the user behavior of static social network. This article studied the dynamic graph representation learning so as to put forward an improved link prediction model in dynamic social network. Besides, the interactions in the real world can be multiple, links at different moments may have different meanings. The proposed model firstly solved the problem of link prediction on multiple kinds of edges. The whole embedding of each node is separated into two parts, basic embedding and edge embedding. Then the proposed model selected time slices for dynamic social network to get the graph embeddings in different snapshots. What’s more, the $t+1$ time step embedding vector was used to validate $t$ time step prediction effect and the proposed model performed better than traditional graph representation learning methods.
机译:在现实世界的自然和社会制度中,各地都可以看到各种网络。人们生活的世界可以被视为具有不同维度的网络的组合。链路预测正式确定人与人之间的互动行为。传统的链路预测方法主要研究静态社交网络的用户行为。本文研究了动态图形表示学习,以便在动态社交网络中提出改进的链路预测模型。此外,现实世界中的互动可以是多个,不同时刻的链接可能具有不同的含义。所提出的模型首先解决了多种边缘链路预测的问题。每个节点的整个嵌入分为两部分,基本嵌入和边缘嵌入。然后,建议的模型选择动态社交网络的时间切片,以获取不同快照的图形嵌入。更重要的是,<内联公式XMLNS:mml =“http://www.w3.org/1998/math/mathml”xmlns:xlink =“http://www.w3.org/1999/xlink”> < Tex-Math符号=“乳胶”> $ t + 1 $ 时间步骤嵌入矢量用于验证<内联公式xmlns:mml =“http://www.w3 .org / 1998 / math / mathml“xmlns:xlink =”http://www.w3.org/1999/xlink“> $ t $ 时间步骤预测效果和所提出的模型比传统的图形表示学习方法更好。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号