首页> 外文期刊>Knowledge-Based Systems >Image-text sentiment analysis via deep multimodal attentive fusion
【24h】

Image-text sentiment analysis via deep multimodal attentive fusion

机译:通过深度多模态注意力融合进行图文情感分析

获取原文
获取原文并翻译 | 示例

摘要

Sentiment analysis of social media data is crucial to understand people's position, attitude, and opinion toward a certain event, which has many applications such as election prediction and product evaluation. Though great effort has been devoted to the single modality (image or text), less effort is paid to the joint analysis of multimodal data in social media. Most of the existing methods for multimodal sentiment analysis simply combine different data modalities, which results in dissatisfying performance on sentiment classification. In this paper, we propose a novel image-text sentiment analysis model, i.e., Deep Multimodal Attentive Fusion (DMAF), to exploit the discriminative features and the internal correlation between visual and semantic contents with a mixed fusion framework for sentiment analysis. Specifically, to automatically focus on discriminative regions and important words which are most related to the sentiment, two separate unimodal attention models are proposed to learn effective emotion classifiers for visual and textual modality respectively. Then, an intermediate fusion-based multimodal attention model is proposed to exploit the internal correlation between visual and textual features for joint sentiment classification. Finally, a late fusion scheme is applied to combine the three attention models for sentiment prediction. Extensive experiments are conducted to demonstrate the effectiveness of our approach on both weakly labeled and manually labeled datasets. (C) 2019 Elsevier B.V. All rights reserved.
机译:社交媒体数据的情感分析对于了解人们对某个事件的立场,态度和观点至关重要,该事件具有很多应用,例如选举预测和产品评估。尽管已经为单一模态(图像或文本)付出了巨大的努力,但在社交媒体中对多模式数据的联合分析却付出了较少的努力。现有的大多数用于多模式情感分析的方法只是简单地组合了不同的数据模式,这导致对情感分类的性能不令人满意。在本文中,我们提出了一种新颖的图像-文本情感分析模型,即深度多模式注意力融合(DMAF),以利用混合融合框架进行视觉分析来利用视觉和语义内容之间的区别性特征和内部相关性。具体而言,为了自动关注与情感最相关的区分区域和重要单词,提出了两个单独的单峰注意力模型,以分别学习视觉和文本形式的有效情感分类器。然后,提出了一个基于中间融合的多模态注意模型,以利用视觉和文本特征之间的内部相关性进行联合情感分类。最后,采用后期融合方案将三个注意力模型组合在一起以进行情绪预测。进行了广泛的实验,以证明我们的方法在弱标记和手动标记的数据集上的有效性。 (C)2019 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Knowledge-Based Systems》 |2019年第1期|26-37|共12页
  • 作者单位

    Beihang Univ, Sch Comp Sci & Engn, State Key Lab Software Dev Environm, Beijing 100191, Peoples R China;

    Beihang Univ, Sch Cyber Sci & Technol, Beijing 100191, Peoples R China;

    Coordinat Ctr China, Natl Comp Network Emergency Response Tech Team, Beijing 100029, Peoples R China;

    Beihang Univ, Sch Comp Sci & Engn, State Key Lab Software Dev Environm, Beijing 100191, Peoples R China;

    Beihang Univ, Sch Comp Sci & Engn, State Key Lab Software Dev Environm, Beijing 100191, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Multimodal learning; Sentiment analysis; Attention model; Fusion;

    机译:多模式学习;情感分析;注意力模型;融合;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号