首页> 外文期刊>Knowledge-Based Systems >Control and optimization of human perception on virtual garment products by learning from experimental data
【24h】

Control and optimization of human perception on virtual garment products by learning from experimental data

机译:通过从实验数据中学习来控制和优化人类对虚拟服装产品的感知

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes an original study for controlling, in an Internet and virtual reality-based collaborative design platform, human perception on 3D virtual garments by adjusting fabric parameters, constituting the inputs to the garment CAD software. This study will permit the designer to determine the most relevant product through a number of interactions with the consumer. For this purpose, two sensory experiments have been realized on a small number of fabric samples. In the first experiment, we propose an active learning-based experimental design in order to find the most appropriate values of the fabric technical parameters permitting to minimize the overall perceptual difference between real and virtual fabrics in static and dynamic scenarios. The second sensory experiment aims to extract normalized tactile and visual sensory descriptors characterizing human perception on the concerned fabric samples. In the collaborative design process, these normalized descriptors will be used for communications between the designer and the consumer on perceptual quality of virtual products. By learning from the experimental data on identified inputs (fabric parameters of the CAD software) and outputs (sensory descriptors), we model the relationship between fabric technical parameters and human perception on finished virtual products. The method of fuzzy ID3 decision tree has successfully been applied in this modeling procedure. This model, combined with the corresponding garment CAD software and the learning data acquired from the two sensory experiments, constitutes the main components of the learning data-driven collaborative design platform. Using this platform, we have realized a number of garments meeting consumer's personalized perceptual requirements. (C) 2015 Elsevier B.V. All rights reserved.
机译:本文提出了一项原始研究,旨在通过调整面料参数,在互联网和基于虚拟现实的协同设计平台中控制人对3D虚拟服装的感知,从而构成服装CAD软件的输入。这项研究将使设计师能够通过与消费者的多次互动来确定最相关的产品。为此,已经在少量织物样品上实现了两个感官实验。在第一个实验中,我们提出了一个基于学习的主动实验设计,以便找到最合适的面料技术参数值,从而使静态和动态场景下的真实和虚拟面料之间的总体感知差异最小。第二个感官实验旨在提取归一化的触觉和视觉感官描述符,以表征有关织物样品上的人类感知。在协作设计过程中,这些标准化的描述符将用于设计者和消费者之间关于虚拟产品感知质量的通信。通过从确定的输入(CAD软件的织物参数)和输出(感官描述符)上的实验数据中学习,我们可以对织物技术参数与最终虚拟产品上的人类感知之间的关系进行建模。模糊ID3决策树的方法已成功应用于该建模过程。该模型与相应的服装CAD软件以及从两次感官实验中获得的学习数据相结合,构成了学习数据驱动的协同设计平台的主要组成部分。使用该平台,我们已经实现了许多满足消费者个性化感知要求的服装。 (C)2015 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号