首页> 外文期刊>Knowledge-Based Systems >Fit evaluation of virtual garment try-on by learning from digital pressure data
【24h】

Fit evaluation of virtual garment try-on by learning from digital pressure data

机译:通过从数字压力数据中学习来评估虚拟服装试穿的合身性

获取原文
获取原文并翻译 | 示例

摘要

Presently, garment fit evaluation mainly focuses on real try-on, and rarely deals with virtual try-on. With the rapid development of E-commerce, there is a profound growth of garment purchases through the internet. In this context, fit evaluation of virtual garment try-on is vital in the clothing industry. In this paper, we propose a Naive Bayes-based model to evaluate garment fit. The inputs of the proposed model are digital clothing pressures of different body parts, generated from a 3D garment CAD software; while the output is the predicted result of garment fit (fit or unfit). To construct and train the proposed model, data on digital clothing pressures and garment real fit was collected for input and output learning data respectively. By learning from these data, our proposed model can predict garment fit rapidly and automatically without any real try-on; therefore, it can be applied to remote garment fit evaluation in the context of e-shopping. Finally, the effectiveness of our proposed method was validated using a set of test samples. Test results showed that digital clothing pressure is a better index than ease allowance to evaluate garment fit, and machine learning-based garment fit evaluation methods have higher prediction accuracies. (C) 2017 Elsevier B.V. All rights reserved.
机译:目前,服装合身性评估主要侧重于实际试穿,而很少涉及虚拟试穿。随着电子商务的飞速发展,通过互联网购买服装的数量急剧增加。在这种情况下,虚拟服装试穿的合身性评估在服装行业至关重要。在本文中,我们提出了一个基于朴素贝叶斯的模型来评估服装的合身性。所建议模型的输入是通过3D服装CAD软件生成的不同身体部位的数字服装压力;而输出是服装合身(合身或不合身)的预测结果。为了构建和训练提出的模型,分别收集了数字服装压力和服装实际合体性的数据,分别用于输入和输出学习数据。通过从这些数据中学习,我们提出的模型可以快速,自动地预测服装的合身性,而无需任何实际的试穿。因此,它可以应用于电子购物环境中的远程服装合身性评估。最后,使用一组测试样本验证了我们提出的方法的有效性。测试结果表明,数字服装压力比评估服装合身程度的宽松程度更好,并且基于机器学习的服装合身性评估方法具有更高的预测准确性。 (C)2017 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Knowledge-Based Systems》 |2017年第1期|174-182|共9页
  • 作者单位

    Xian Polytech Univ, Apparel & Art Design Coll, Xian 710048, Shaanxi, Peoples R China|Donghua Univ, Coll Fash & Design, Shanghai 200051, Peoples R China|Univ Lille 1, F-59000 Lille, France|ENSAIT, GEMTEX Lab, F-59100 Roubaix, France;

    Univ Lille 1, F-59000 Lille, France|ENSAIT, GEMTEX Lab, F-59100 Roubaix, France;

    Univ Lille 1, F-59000 Lille, France|ENSAIT, GEMTEX Lab, F-59100 Roubaix, France;

    Donghua Univ, Coll Fash & Design, Shanghai 200051, Peoples R China;

    Univ Lille 1, F-59000 Lille, France|ENSAIT, GEMTEX Lab, F-59100 Roubaix, France;

    Univ Lille 1, F-59000 Lille, France|ENSAIT, GEMTEX Lab, F-59100 Roubaix, France;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Digital clothing pressure; Support vector machines; Naive Bayes; Active learning; Ease allowance; Real try-on;

    机译:数字服装压力;支持向量机;朴素贝叶斯;主动学习;宽松津贴;实际试穿;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号