首页> 外文期刊>Journal of visual communication & image representation >Single image dehazing using improved cycleGAN
【24h】

Single image dehazing using improved cycleGAN

机译:使用改进的Cyclegan进行单像脱色

获取原文
获取原文并翻译 | 示例

摘要

Haze is an aggregation of very fine, widely dispersed, solid and/or liquid particles suspended in the atmosphere. In this paper, we propose an end-to-end network for single image dehazing, which enhances the CycleGAN model by introducing a transformer architecture within the generator, which is specific for haze removal. The proposed model is trained in an unpaired fashion with clear and hazy images altogether and does not require pairs of hazy and corresponding ground-truth clear images. Furthermore, the proposed model does not depend on estimating the parameters of the atmospheric scattering model. Rather, it uses a K-estimation module as the generator's transformer for complete end-to-end modeling. The feature transformer introduced in the proposed generator model transforms the encoded features into desired feature space and then feeds them into the CycleGAN decoder to create a clear image. In the proposed model we further modified the cycle consistency loss to include the SSIM loss along with pixel-wise mean loss to produce a new loss function specific for the reconstruction task, which enhances the performance of the proposed model. The model performs well even on the high-resolution images provided in the NTIRE 2019 challenge dataset for single image dehazing. Further, we perform experiments on NYU-Depth and reside beta datasets. Results of our experiments show the efficacy of the proposed approach compared to the state-of-the-art in removing the haze from the input image.
机译:雾度是非常细,广泛分散的固体和/或液体颗粒的聚集在大气中。在本文中,我们提出了一种用于单幅图像去吸附的端到端网络,其通过在发电机内引入变压器架构来增强自行车模型,该架构是针对雾度去除的特定。拟议的模型以不配对的方式培训,完全是清晰朦胧的图像,不需要对朦胧和相应的地面真实清晰的图像。此外,所提出的模型不依赖于估计大气散射模型的参数。相反,它使用K估计模块作为发电机的变压器,以完成完整的端到端建模。在所提出的生成器模型中引入的特征变压器将编码特征转换为所需的特征空间,然后将它们馈送到Cyclegan解码器中以创建清晰的图像。在所提出的模型中,我们进一步修改了周期一致性损失,包括SSIM损耗以及像素方面的均值,以产生用于重建任务的新损耗功能,这增强了所提出的模型的性能。即使在NTIRE 2019挑战数据集中提供的高分辨率图像,该模型也能执行良好的单图像脱水。此外,我们对Nyu-Deave和Reside Beta数据集进行实验。我们的实验结果表明,与现有技术相比,所提出的方法在从输入图像中移除雾度时的效果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号