首页> 外文会议>IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops >Cycle-Dehaze: Enhanced CycleGAN for Single Image Dehazing
【24h】

Cycle-Dehaze: Enhanced CycleGAN for Single Image Dehazing

机译:循环除雾:增强的CycleGAN,用于单图像除雾

获取原文

摘要

In this paper, we present an end-to-end network, called Cycle-Dehaze, for single image dehazing problem, which does not require pairs of hazy and corresponding ground truth images for training. That is, we train the network by feeding clean and hazy images in an unpaired manner. Moreover, the proposed approach does not rely on estimation of the atmospheric scattering model parameters. Our method enhances CycleGAN formulation by combining cycle-consistency and perceptual losses in order to improve the quality of textural information recovery and generate visually better haze-free images. Typically, deep learning models for dehazing take low resolution images as input and produce low resolution outputs. However, in the NTIRE 2018 challenge on single image dehazing, high resolution images were provided. Therefore, we apply bicubic downscaling. After obtaining low-resolution outputs from the network, we utilize the Laplacian pyramid to upscale the output images to the original resolution. We conduct experiments on NYU-Depth, I-HAZE, and O-HAZE datasets. Extensive experiments demonstrate that the proposed approach improves CycleGAN method both quantitatively and qualitatively.
机译:在本文中,我们提出了一个称为“循环除雾”的端到端网络,用于单图像除雾问题,该网络不需要成对的模糊图像和相应的地面真实图像进行训练。也就是说,我们通过以不成对的方式提供干净且朦胧的图像来训练网络。而且,所提出的方法不依赖于大气散射模型参数的估计。我们的方法通过结合周期一致性和感知损失来增强CycleGAN的公式化,从而提高纹理信息恢复的质量并生成视觉上更好的无雾图像。通常,用于除雾的深度学习模型将低分辨率图像作为输入并产生低分辨率输出。但是,在NTIRE 2018单图像解雾挑战中,提供了高分辨率图像。因此,我们应用双三次缩减。从网络获得低分辨率输出后,我们利用拉普拉斯金字塔将输出图像放大到原始分辨率。我们对NYU深度,I-HAZE和O-HAZE数据集进行实验。大量的实验表明,该方法在定量和定性上都对CycleGAN方法进行了改进。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号