首页> 外文期刊>Journal of testing and evaluation >X-Ray Imaging Inspection System for Blind Holes in the Intermediate Layer of Printed Circuit Boards with Neural Network Identification
【24h】

X-Ray Imaging Inspection System for Blind Holes in the Intermediate Layer of Printed Circuit Boards with Neural Network Identification

机译:带有神经网络识别的印刷电路板中间层盲孔X射线成像检查系统

获取原文
获取原文并翻译 | 示例

摘要

This study presented an X-ray imaging inspection system with a backpropagation neural network that could increase the accuracy of defect detection and classification of blind holes in the intermediate layer of printed circuit boards (PCBs). In this system, a multilayer PCB image was obtained from an X-ray camera. The original image was then converted into a binary image with a noise-suppression filter, and the edge-detection method was used to compare the image with a standard sample. Drilling was based on the hole-position's accuracy measurement to obtain the hole flak figure, which was useful for calculating the drilling coordinate error with a backpropagation neural network. The proposed method could determine the information of the PCB edge test holes automatically. The accuracy of the feature extraction was increased by using the proposed module-detection method, together with image processing and the backpropagation networks process.
机译:这项研究提出了一种具有反向传播神经网络的X射线成像检查系统,该系统可以提高缺陷检测的准确性以及印刷电路板(PCB)中间层中盲孔的分类。在该系统中,从X射线照相机获得了多层PCB图像。然后将原始图像通过降噪滤波器转换为二进制图像,然后使用边缘检测方法将图像与标准样品进行比较。钻孔是基于孔位置​​的精度测量而获得的孔弹头图形,这对于使用反向传播神经网络计算钻孔坐标误差非常有用。该方法可以自动确定PCB边缘测试孔的信息。通过使用提出的模块检测方法,图像处理和反向传播网络过程,可以提高特征提取的准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号