首页> 外文期刊>Journal of supercomputing >Multi-sensor-based detection and tracking of moving objects for relative position estimation in autonomous driving conditions
【24h】

Multi-sensor-based detection and tracking of moving objects for relative position estimation in autonomous driving conditions

机译:基于多传感器的检测和跟踪自动驾驶条件中相对位置估计的移动物体

获取原文
获取原文并翻译 | 示例

摘要

Moving object detection (MOD) technology was combined to include detection, tracking and classification which provides information such as the local and global position estimation and velocity from around objects in real time at least 15 fps. To operate an autonomous driving vehicle on real roads, a multi-sensor-based object detection and classification module should carry out simultaneously processing in the autonomous system for safe driving. Additionally, the object detection results must have high-speed processing performance in a limited HW platform for autonomous vehicles. To solve this problem, we used the Redmon in DARKNET-based () deep learning method to modify a detector that obtains the local position estimation in real time. The aim of this study was to get the local position information of a moving object by fusing the information from multi-cameras and one RADAR. Thus, we made a fusion server to synchronize and converse the information of multi-objects from multi-sensors on our autonomous vehicle. In this paper, we introduce a method to solve the local position estimation that recognizes the around view which includes the long-, middle- and short-range view. We also describe a method to solve the problem caused by a steep slope and a curving road condition while driving. Additionally, we introduce the results of our proposed MOD-based detection and tracking estimation to achieve a license for autonomous driving in KOREA.
机译:移动对象检测(MOD)技术被组合为包括检测,跟踪和分类,其提供诸如实际时间的局部和全局位置估计和速度实时至少15fps的信息。为了在真正的道路上操作自主驾驶车辆,基于多传感器的物体检测和分类模块应在自主系统中进行同时处理,以便安全驾驶。此外,对象检测结果必须在自动车辆的有限HW平台中具有高速处理性能。为了解决这个问题,我们在基于DarkNet的()深度学习方法中使用RedMon来修改检测器,该检测器实时获得本地位置估计。本研究的目的是通过融合来自多摄像机和一个雷达的信息来获得移动物体的本地位置信息。因此,我们制作了一个融合服务器,用于在我们的自主车辆上的多传感器中同步和逆转多对象的信息。在本文中,我们介绍一种解决局部位置估计的方法,该估计识别包括长,中间和短距离视图的围绕视图。我们还描述了一种解决陡坡和驾驶时弯曲的道路状况引起的问题的方法。此外,我们还介绍了我们所提出的基于Mod的检测和跟踪估计的结果,以实现韩国自主驾驶的许可。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号