首页> 外文期刊>Journal of supercomputing >Design of DRAM-NAND flash hybrid main memory and Q-learning-based prefetching method
【24h】

Design of DRAM-NAND flash hybrid main memory and Q-learning-based prefetching method

机译:dram-nand闪存混合主存储器的设计及基于q学习的预取方法

获取原文
获取原文并翻译 | 示例

摘要

Owing to the increased need for machine learning and artificial intelligence in current cloud computing systems, the amount of data that needs to be processed has exponentially increased. Thus, it is important to optimize memory and storage systems to reduce the energy consumption and execution time of applications. This paper proposes a new Q-learning-based prefetching algorithm for DRAM–NAND flash hybrid main memory architecture. To minimize the computational overheads of learning-based schemes, we have designed two learning policies, namely aggressive learning and lazy learning. The proposed system reduces the energy consumption by about 80% of the memory and storage for Redis, OpenStack Swift which is a cloud computing open source framework and Apache Storm workloads. Further, the overall execution time of workloads in cloud computing applications is reduced by almost half. Using a path generator with a Q-learning-based prefetching algorithm, we realize an increased hit rate of about 21% compared to that with a no-prefetching system, compared to non-prefetching system.
机译:由于当前云计算系统中对机器学习和人工智能的需求不断增长,需要处理的数据量呈指数增长。因此,优化存储器和存储系统以减少能耗和应用程序执行时间很重要。本文提出了一种新的基于Q学习的DRAM-NAND闪存混合主存储器架构的预取算法。为了最小化基于学习的方案的计算开销,我们设计了两种学习策略,即积极学习和懒惰学习。拟议的系统可将Redis,OpenStack Swift(一种云计算开源框架)和Apache Storm工作负载的内存和存储能耗降低约80%。此外,云计算应用程序中工作负载的总体执行时间减少了近一半。使用具有基于Q学习的预取算法的路径生成器,与非预取系统相比,与非预取系统相比,我们实现了约21%的增加命中率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号