首页> 外文期刊>Journal of statistical computation and simulation >High-dimensional Markowitz portfolio optimization problem: empirical comparison of covariance matrix estimators
【24h】

High-dimensional Markowitz portfolio optimization problem: empirical comparison of covariance matrix estimators

机译:高维Markowitz产品组合优化问题:协方差矩阵估计的实证比较

获取原文
获取原文并翻译 | 示例

摘要

We compare the performance of recently developed regularized covariance matrix estimators for Markowitz's portfolio optimization and of the minimum variance portfolio (MVP) problem in particular. We focus on seven estimators that are applied to the MVP problem in the literature; three regularize the eigenvalues of the sample covariance matrix, and the other four assume the sparsity of the true covariance matrix or its inverse. Comparisons are made with two sets of long-term S&P 500 stock return data that represent two extreme scenarios of active and passive management. The results show that the MVPs with sparse covariance estimators have high Sharpe ratios but that the naive diversification (also known as the 'uniform (on market share) portfolio') still performs well in terms of wealth growth.
机译:我们比较最近开发的正规化协方差矩阵估计为Markowitz的投资组合优化和最小方差组合(MVP)问题的性能。我们专注于应用于文献中的MVP问题的七个估算;三个正规化样本协方差矩阵的特征值,另外四个假设真正协方差矩阵的稀疏性或其反向。使用两组长期标准普尔500亿股股票回报数据进行比较,代表主动和被动管理的两个极端情景。结果表明,具有稀疏协方差估计器的MVP具有高锐利比率,但天真的多样化(也称为“统一(市场份额)组合”)仍然在财富增长方面表现良好。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号