首页> 外文期刊>Journal of statistical computation and simulation >High-dimensional Markowitz portfolio optimization problem: empirical comparison of covariance matrix estimators
【24h】

High-dimensional Markowitz portfolio optimization problem: empirical comparison of covariance matrix estimators

机译:高维Markowitz投资组合优化问题:协方差矩阵估计量的经验比较

获取原文
获取原文并翻译 | 示例

摘要

We compare the performance of recently developed regularized covariance matrix estimators for Markowitz's portfolio optimization and of the minimum variance portfolio (MVP) problem in particular. We focus on seven estimators that are applied to the MVP problem in the literature; three regularize the eigenvalues of the sample covariance matrix, and the other four assume the sparsity of the true covariance matrix or its inverse. Comparisons are made with two sets of long-term S&P 500 stock return data that represent two extreme scenarios of active and passive management. The results show that the MVPs with sparse covariance estimators have high Sharpe ratios but that the naive diversification (also known as the 'uniform (on market share) portfolio') still performs well in terms of wealth growth.
机译:我们比较了最近开发的用于Markowitz投资组合优化的正则化协方差矩阵估计器的性能,尤其是最小方差投资组合(MVP)问题。我们集中于文献中适用于MVP问题的七个估计器。三个模型对样本协方差矩阵的特征值进行正则化,其他四个假设真实协方差矩阵的稀疏性或其逆。比较了两组代表标准主动和被动管理的两种极端情形的标准普尔500长期股票收益数据。结果表明,具有稀疏协方差估计量的MVP具有较高的夏普比率,但是就财富增长而言,单纯的多元化(也称为“市场份额”)仍然表现良好。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号