首页> 外文期刊>Journal of statistical computation and simulation >A classifier for multi-dimensional datasets based on Bayesian multiple kernel grouping learning
【24h】

A classifier for multi-dimensional datasets based on Bayesian multiple kernel grouping learning

机译:基于贝叶斯多核分组学习的多维数据集的分类器

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes an algorithm for the classification of multi-dimensional datasets based on the conjugate Bayesian Multiple Kernel Grouping Learning (BMKGL). Using conjugate Bayesian framework improves the computation efficiency. Multiple kernels instead of a single kernel avoid the kernel selection problem which is also a computationally expensive work. Through grouping parameter learning, BMKGL can simultaneously integrate information from different dimensions and find the dimensions which contribute more to the variations of the outcome for the purpose of interpretable property. Meanwhile, BMKGL can select the most suitable combination of kernels for different dimensions so as to extract the most appropriate measure for each dimension and improve the accuracy of classification results. The simulation results illustrate that our learning process has better performance in prediction results and stability compared to some popular classifiers, such as k-nearest neighbours algorithm, support vector machine algorithm and naive Bayes classifier. BMKGL also outperforms previous methods in terms of accuracy and interpretation for the heart disease and EEG datasets.
机译:本文提出了一种基于共轭贝叶斯多核分组学习(BMKGL)的多维数据集分类算法。使用共轭贝叶斯框架提高了计算效率。多个内核而不是单个内核避免内核选择问题,这也是计算昂贵的工作。通过分组参数学习,BMKGL可以同时将信息从不同尺寸集成并找到尺寸,这些尺寸对于可解释的财产目的的结果更加贡献。同时,BMKGL可以为不同尺寸选择最合适的内核组合,以提取每个维度最合适的度量,提高分类结果的准确性。仿真结果表明,与某些流行的分类器相比,我们的学习过程具有更好的预测结果和稳定性,例如K-Collect邻居算法,支持向量机算法和Naive Bayes分类器。 BMKGL在心脏病和EEG数据集的准确性和解释方面也优于先前的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号