首页> 外文期刊>Journal of statistical computation and simulation >A classifier for multi-dimensional datasets based on Bayesian multiple kernel grouping learning
【24h】

A classifier for multi-dimensional datasets based on Bayesian multiple kernel grouping learning

机译:基于贝叶斯多核分组学习的多维数据集分类器

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes an algorithm for the classification of multi-dimensional datasets based on the conjugate Bayesian Multiple Kernel Grouping Learning (BMKGL). Using conjugate Bayesian framework improves the computation efficiency. Multiple kernels instead of a single kernel avoid the kernel selection problem which is also a computationally expensive work. Through grouping parameter learning, BMKGL can simultaneously integrate information from different dimensions and find the dimensions which contribute more to the variations of the outcome for the purpose of interpretable property. Meanwhile, BMKGL can select the most suitable combination of kernels for different dimensions so as to extract the most appropriate measure for each dimension and improve the accuracy of classification results. The simulation results illustrate that our learning process has better performance in prediction results and stability compared to some popular classifiers, such as k-nearest neighbours algorithm, support vector machine algorithm and naive Bayes classifier. BMKGL also outperforms previous methods in terms of accuracy and interpretation for the heart disease and EEG datasets.
机译:提出了一种基于共轭贝叶斯多核分组学习(BMKGL)的多维数据集分类算法。使用共轭贝叶斯框架可以提高计算效率。多个内核而不是单个内核避免了内核选择问题,这也是一个计算量很大的工作。通过对参数学习进行分组,BMKGL可以同时整合来自不同维度的信息,并找到可以为可解释属性目的而对结果变化做出更大贡献的维度。同时,BMKGL可以针对不同维度选择最合适的内核组合,从而为每个维度提取最合适的度量,并提高分类结果的准确性。仿真结果表明,与k-近邻算法,支持向量机算法和朴素贝叶斯分类器等流行的分类器相比,我们的学习过程在预测结果和稳定性上具有更好的性能。 BMKGL在心脏病和EEG数据集的准确性和解释方面也优于以前的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号