首页> 外文期刊>Journal of statistical computation and simulation >Updating input-output matrices: assessing alternatives through simulation
【24h】

Updating input-output matrices: assessing alternatives through simulation

机译:更新输入输出矩阵:通过仿真评估替代方案

获取原文
获取原文并翻译 | 示例

摘要

A problem that frequently arises in economics, demography, statistics, transportation planning and stochastic modelling is how to adjust the entries of a matrix to fulfil row and column aggregation constraints. Biproportional methods in general and the so-called RAS algorithm in particular, have been used for decades to find solutions to this type of problem. Although alternatives exist, the RAS algorithm and its extensions are still the most popular. Apart from some interesting empirical and theoretical properties, tradition, simplicity and very low computational costs are among the reasons behind the great success of RAS. Nowadays computer hardware and software have made alternative procedures equally attractive. This work analyses, through simulation, the performance of RAS and some minimands when matrix coefficients vary following different schemes of change. Results suggest RAS algorithm as the best option when variations in coefficients are proportional to their size, while the method based on minimizing squared differences is seen to be the best alternative when the standard deviations of variations are either constant, variable, or an inverse function of matrix entries.
机译:在经济学,人口统计学,统计,运输计划和随机建模中经常出现的问题是如何调整矩阵的条目以满足行和列聚合约束。几十年来,通常使用双比例方法,尤其是所谓的RAS算法,来找到此类问题的解决方案。尽管存在替代方法,但是RAS算法及其扩展仍然是最受欢迎的方法。除了一些有趣的经验和理论特性外,传统,简单和非常低的计算成本也是RAS取得巨大成功的原因之一。如今,计算机硬件和软件已使替代程序同样具有吸引力。这项工作通过仿真分析了当矩阵系数随不同的变化方案而变化时RAS的性能和一些最小的要求。结果表明,当系数的变化与大小成正比时,RAS算法是最佳选择,而当方差的标准偏差为常数,变量或函数的反函数时,基于最小化平方差的方法被视为最佳选择。矩阵条目。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号