首页> 外文期刊>Journal of VLSI signal processing >Improved Class Prediction in DNA Microarray Gene Expression Data by Unsupervised Reduction of the Dimensionality followed by Supervised Learning with a Perceptron
【24h】

Improved Class Prediction in DNA Microarray Gene Expression Data by Unsupervised Reduction of the Dimensionality followed by Supervised Learning with a Perceptron

机译:通过无监督降低维数,然后借助感知器进行有监督的学习,改进了DNA芯片基因表达数据中的类别预测

获取原文
获取原文并翻译 | 示例

摘要

This manuscript describes a combined approach of unsupervised clustering followed by supervised learning that provides an efficient classification of conditions in DNA array gene expression experiments (different cell lines including some cancer types, in the cases shown). Firstly the dimensionality of the dataset of gene expression profiles is reduced to a number of non-redundant clusters of co-expressing genes using an unsupervised clustering algorithm, the Self Organizing Tree Algorithm (SOTA), a hierarchical version of Self Organizing Maps (SOM). Then, the average values of these clusters are used for training a perceptron that produces a very efficient classification of the conditions. This way of reducing the dimensionality of the data set seems to perform better than other ones previously proposed such as principal component analysis (PCA). In addition, the weights that connect the gene clusters to the different experimental conditions can be used to assess the relative importance of the genes in the definition of these classes. Finally, Gene Ontology (GO) terms are used to infer a possible biological role for these groups of genes and to asses the validity of the classification from a biological point of view.
机译:该手稿描述了无监督聚类然后是有监督学习的组合方法,该方法提供了DNA阵列基因表达实验中条件的有效分类(在所示情况下,不同细胞系包括某些癌症类型)。首先,使用无监督聚类算法,自组织树算法(SOTA),自组织图(SOM)的分层版本,将基因表达谱数据集的维数减少为多个共表达基因的非冗余簇。然后,将这些簇的平均值用于训练感知器,该感知器可对条件进行非常有效的分类。减少数据集维的这种方法似乎比以前提出的其他方法(例如主成分分析(PCA))表现更好。此外,将基因簇连接到不同实验条件的权重可用于评估基因在这些类别的定义中的相对重要性。最后,使用基因本体论(GO)术语来推断这些基因组可能的生物学作用,并从生物学的角度评估分类的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号