首页> 外文期刊>Expert systems with applications >Rasch-based high-dimensionality data reduction and class prediction with applications to microarray gene expression data
【24h】

Rasch-based high-dimensionality data reduction and class prediction with applications to microarray gene expression data

机译:基于Rasch的高维数据归约和分类预测及其在微阵列基因表达数据中的应用

获取原文
获取原文并翻译 | 示例

摘要

Class prediction is an important application of microarray gene expression data analysis. The high-dimensionality of microarray data, where number of genes (variables) is very large compared to the number of samples (observations), makes the application of many prediction techniques (e.g., logistic regression, discriminant analysis) difficult. An efficient way to solve this problem is by using dimension reduction statistical techniques. Increasingly used in psychology-related applications, Rasch model (RM) provides an appealing framework for handling high-dimensional microarray data. In this paper, we study the potential of RM-based modeling in dimensionality reduction with binarized microarray gene expression data and investigate its prediction accuracy in the context of class prediction using linear discriminant analysis. Two different publicly available microarray data sets are used to illustrate a general framework of the approach. Performance of the proposed method is assessed by re-randomization scheme using principal component analysis (PCA) as a benchmark method. Our results show that RM-based dimension reduction is as effective as PCA-based dimension reduction. The method is general and can be applied to the other high-dimensional data problems.
机译:类预测是微阵列基因表达数据分析的重要应用。微阵列数据的高维度,其中基因(变量)的数量与样本(观察)的数量相比非常大,这使得许多预测技术(例如逻辑回归,判别分析)的应用变得困难。解决此问题的有效方法是使用降维统计技术。 Rasch模型(RM)越来越多地用于心理学相关的应用程序中,为处理高维微阵列数据提供了一个有吸引力的框架。在本文中,我们利用二值化微阵列基因表达数据研究了基于RM的建模在降维中的潜力,并在使用线性判别分析进行类预测的背景下研究了其预测精度。使用两个不同的可公开获得的微阵列数据集来说明该方法的一般框架。通过使用主成分分析(PCA)作为基准方法的重新随机化方案来评估所提出方法的性能。我们的结果表明,基于RM的降维与基于PCA的降维一样有效。该方法是通用的,可以应用于其他高维数据问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号