首页> 外文期刊>Journal of VLSI signal processing systems >Information Regularized Sensor Fusion: Application to Localization With Distributed Motion Sensors
【24h】

Information Regularized Sensor Fusion: Application to Localization With Distributed Motion Sensors

机译:信息正则化传感器融合:应用于分布式运动传感器的本地化

获取原文
获取原文并翻译 | 示例

摘要

We propose the information regularization principle for fusing information from sets of identical sensors observing a target phenomenon. The principle basically proposes an importance-weighting scheme for each sensor measurement based on the mutual information based pairwise statistical similarity matrix between sensors. The principle is applied to maximum likelihood estimation and particle filter based state estimation. A demonstration of the proposed regularization scheme in centralized data fusion of dense motion detector networks for target tracking is provided. Simulations confirm that the introduction of information regularization significantly improves localization accuracy of both maximum likelihood and particle filter approaches compared to their baseline implementations. Outlier detection and sensor failure detection capabilities, as well as possible extensions of the principle to decentralized sensor fusion with communication constraints are briefly discussed.
机译:我们提出了信息正则化原理,用于融合来自观察目标现象的相同传感器集的信息。该原理基本上基于传感器之间基于互信息的成对统计相似性矩阵,为每个传感器测量提出了一种重要度加权方案。该原理适用于最大似然估计和基于粒子滤波器的状态估计。提供了在目标跟踪的密集运动检测器网络的集中数据融合中提出的正则化方案的演示。仿真证实,与基线实现相比,信息正则化的引入显着提高了最大似然法和粒子滤波方法的定位精度。简要讨论了异常检测和传感器故障检测功能,以及该原理在具有通信约束的分散式传感器融合中的可能扩展。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号