首页> 外文期刊>Journal of VLSI signal processing systems >Gaussian Noise Filtering from ECG by Wiener Filter and Ensemble Empirical Mode Decomposition
【24h】

Gaussian Noise Filtering from ECG by Wiener Filter and Ensemble Empirical Mode Decomposition

机译:通过Wiener滤波和集成经验模态分解从ECG进行高斯噪声滤波

获取原文
获取原文并翻译 | 示例

摘要

Empirical mode decomposition (EMD) is a powerful algorithm that decomposes signals as a set of intrinsic mode function (IMF) based on the signal complexity. In this study, partial reconstruction of IMF acting as a filter was used for noise reduction in ECG. An improved algorithm, ensemble EMD (EEMD), was used for the first time to improve the noise-filtering performance, based on the mode-mixing reduction between near IMF scales. Both standard ECG templates derived from simulator and Arrhythmia ECG database were used as ECG signal, while Gaussian white noise was used as noise source. Mean square error (MSE) between the reconstructed ECG and original ECG was used as the filter performance indicator. FIR Wiener filter was also used to compare the filtering performance with EEMD. Experimental result showed that EEMD had better noise-filtering performance than EMD and FIR Wiener filter. The average MSE ratios of EEMD to EMD and FIR Wiener filter were 0.71 and 0.61, respectively. Thus, this study investigated an ECG noise-filtering procedure based on EEMD. Also, the optimal added noise power and trial number for EEMD was also examined.
机译:经验模式分解(EMD)是一种功能强大的算法,可根据信号复杂度将信号分解为一组固有模式函数(IMF)。在这项研究中,作为滤波器的IMF的部分重建被用于ECG的降噪。基于近IMF标度之间的模式混合减少,第一次使用了改进的算法集成EMD(EEMD)来提高噪声过滤性能。来自模拟器的标准ECG模板和心律失常ECG数据库都用作ECG信号,而高斯白噪声用作噪声源。重建的ECG与原始ECG之间的均方误差(MSE)用作过滤器性能指标。 FIR Wiener滤波器还用于比较EEMD的滤波性能。实验结果表明,EEMD比EMD和FIR Wiener滤波器具有更好的噪声过滤性能。 EEMD与EMD和FIR Wiener滤波器的平均MSE比率分别为0.71和0.61。因此,本研究研究了基于EEMD的ECG噪声过滤程序。此外,还检查了EEMD的最佳附加噪声功率和试验次数。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号