首页> 外文期刊>Journal of signal processing systems for signal, image, and video technology >Generating High-Performance FPGA Accelerator Designs for Big Data Analytics with Fletcher and Apache Arrow
【24h】

Generating High-Performance FPGA Accelerator Designs for Big Data Analytics with Fletcher and Apache Arrow

机译:生成高性能FPGA加速器设计,用于带有闪光灯和Apache箭头的大数据分析

获取原文
获取原文并翻译 | 示例

摘要

As big data analytics systems are squeezing out the last bits of performance of CPUs and GPUs, the next near-term and widely available alternative industry is considering for higher performance in the data center and cloud is the FPGA accelerator. We discuss several challenges a developer has to face when designing and integrating FPGA accelerators for big data analytics pipelines. On the software side, we observe complex run-time systems, hardware-unfriendly in-memory layouts of data sets, and (de)serialization overhead. On the hardware side, we observe a relative lack of platform-agnostic open-source tooling, a high design effort for data structure-specific interfaces, and a high design effort for infrastructure. The open source Fletcher framework addresses these challenges. It is built on top of Apache Arrow, which provides a common, hardware-friendly in-memory format to allow zero-copy communication of large tabular data, preventing (de)serialization overhead. Fletcher adds FPGA accelerators to the list of over eleven supported software languages. To deal with the hardware challenges, we present Arrow-specific components, providing easy-to-use, high-performance interfaces to accelerated kernels. The components are combined based on a generic architecture that is specialized according to the application through an extensive infrastructure generation framework that is presented in this article. All generated hardware is vendor-agnostic, and software drivers add a platform-agnostic layer, allowing users to create portable implementations.
机译:随着大数据分析系统正在挤出CPU和GPU的最后一个性能,下一个近期和广泛可用的替代行业正在考虑在数据中心和云中的更高性能,是FPGA加速器。我们讨论了多项挑战,开发商在设计和整合大型数据分析管道的FPGA加速器时必须面对。在软件方面,我们观察复杂的运行时系统,硬件 - 不友好的内存存储器布局,数据集和(de)序列化开销。在硬件方面,我们观察相对缺乏平台 - 不可知的开源工具,对数据结构特定的接口的高设计工作,以及基础设施的高设计工作。开源Fletcher框架解决了这些挑战。它建立在Apache箭头之上,它提供了一种常见的硬件友好的内存格式,以允许大型表格数据的零复制通信,防止(de)序列化开销。 Fletcher将FPGA加速器添加到超过11个支持的软件语言的列表中。要处理硬件挑战,我们呈现箭头特定的组件,提供易于使用的高性能接口,以加速内核。基于通过本文中提供的广泛的基础架构生成框架根据应用程序组合的组件基于专用的通用架构。所有生成的硬件都是供应商 - 不可知的,软件驱动程序添加平台可靠层,允许用户创建便携式实现。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号