首页> 外文期刊>Journal of VLSI signal processing systems for signal, image, and video technology >Efficient Computation Techniques and Hardware Architectures for Unitary Transformations in Support of Quantum Algorithm Emulation
【24h】

Efficient Computation Techniques and Hardware Architectures for Unitary Transformations in Support of Quantum Algorithm Emulation

机译:用于量子算法仿真支持的单一变换的有效计算技术和硬件架构

获取原文
获取原文并翻译 | 示例

摘要

As the development of quantum computers progresses rapidly, continuous research efforts are ongoing for simulation and emulation of quantum algorithms on classical platforms. Software simulations require use of large-scale, costly, and resource-hungry supercomputers, while hardware emulators make use of fast Field-Programmable-Gate-Array (FPGA) accelerators, but are limited in accuracy and scalability. This work presents a cost-effective FPGA-based emulation platform that demonstrates improved scalability, accuracy, and throughput compared to existing FPGA-based emulators. In this work, speed and area trade-offs between different proposed emulation architectures and computation techniques are investigated. For example, stream-based computation is proposed that greatly reduces resource utilization, improves system scalability in terms of the number of emulated quantum bits, and allows for dynamically changing algorithm inputs. The proposed techniques assume that the unitary transformation of the quantum algorithm is known, and the matrix values can be pre-computed or generated dynamically. 32-bit floating-point precision is used for high accuracy and the architectures are fully pipelined to ensure high throughput. As case studies for emulation, the quantum Fourier transform and Grover's search algorithms are investigated and quantum circuits for multi-pattern Grover's search are also proposed. Experimental evaluation and analysis of the emulation architectures and computation techniques are provided for the investigated quantum algorithms. The emulation framework is prototyped on a high-performance reconfigurable computing (HPRC) system and the results show quantitative improvement over existing FPGA-based emulators.
机译:随着量子计算机的发展迅速进行,持续的研究工作正在进行古典平台上量子算法的仿真和仿真。软件仿真需要使用大规模,昂贵和资源饥饿的超级计算机,而硬件仿真器利用快速现场可编程门阵列(FPGA)加速器,但在准确性和可扩展性方面受到限制。这项工作提出了一种经济高效的基于FPGA的仿真平台,与现有的基于FPGA的仿真器相比,展示了改进的可扩展性,准确性和吞吐量。在这项工作中,研究了不同提出的仿真架构和计算技术之间的速度和区域权衡。例如,提出了基于流的计算,大大降低了资源利用率,从仿真量子位的数量方面提高了系统可扩展性,并且允许动态地改变算法输入。所提出的技术假设量子算法的整体变换是已知的,并且可以动态地预先计算或生成矩阵值。 32位浮点精度用于高精度,并且架构完全流水线以确保高吞吐量。如仿真的案例研究,还研究了量子傅里叶变换和格罗弗的搜索算法,并且还提出了用于多模式格罗弗搜索的量子电路。为研究量子算法提供了对仿真架构和计算技术的实验评估和分析。仿真框架在高性能可重新配置计算(HPRC)系统上原型化,结果显示了对现有FPGA的仿真器的定量改进。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号