首页> 外文期刊>Journal of Real-Time Image Processing >Real-time adaptive visible and infrared image registration based on morphological gradient and C_SIFT
【24h】

Real-time adaptive visible and infrared image registration based on morphological gradient and C_SIFT

机译:基于形态梯度和C_SIFT的实时自适应可见和红外图像配准

获取原文
获取原文并翻译 | 示例

摘要

Since the visible and infrared images have different imaging mechanisms, the difficulty of image registration has greatly increased. The grayscale difference between visible and infrared images is very disadvantageous for extracting feature points in homogenous region, but they both retain the obvious contour edge in the scene. After using the morphological gradient method, the grayscale edge of visible and infrared images can be obtained and their similarity is greatly improved, and their difference may be seen as the difference in brightness or grayscale. Therefore, we proposed a novel algorithm to realise real-time adaptive registration of visible and infrared images using morphological gradient and C_SIFT. Firstly, the morphological gradient method is used to extract the rough edges of visible and infrared images for aligning their visual features as a single similar type. Secondly, the C_SIFT feature detection operator is used to detect and extract feature points from the extracted edges. The C_SIFT uses the centroid method to describe the main direction of feature points, makes rotation invariance feasible. Finally, to verify the effectiveness of the proposed algorithm, we carried out a series of experiments in eight various scenarios. The experimental results show that the proposed algorithm has achieved good experimental results. The registration of visible and infrared images can be completed quickly by the proposed algorithm, and the registration accuracy is satisfactory.
机译:由于可见光和红外图像具有不同的成像机制,因此图像配准的难度大大增加。可见光和红外图像之间的灰度差异对于在均匀区域中提取特征点来非常不利,但它们都保留了场景中的明显轮廓边缘。在使用形态梯度方法之后,可以获得可见光和红外图像的灰度边缘,并且它们的相似性大大提高,并且它们的差异可以看作是亮度或灰度的差异。因此,我们提出了一种使用形态梯度和C_SIFT实现了一种新颖的算法来实现可见光和红外图像的实时自适应登记。首先,形态梯度方法用于提取可见光和红外图像的粗糙边缘,以将它们的视觉特征称为单个类似类型。其次,C_SIFT特征检测操作员用于检测和提取来自提取的边缘的特征点。 C_sift使用质心方法来描述特征点的主方向,使旋转不变性可行。最后,为了验证所提出的算法的有效性,我们在八个各种场景中进行了一系列实验。实验结果表明,该算法达到了良好的实验结果。可见光和红外图像的登记可以通过所提出的算法快速完成,注册精度是令人满意的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号