首页> 外文期刊>Journal of Parallel and Distributed Computing >Differential privacy for renewable energy resources based smart metering
【24h】

Differential privacy for renewable energy resources based smart metering

机译:基于智能计量的可再生能源的差异隐私

获取原文
获取原文并翻译 | 示例

摘要

The increasing energy costs and increase in losses in traditional power grid system triggered the integration of Renewable Energy Resources (RERs) in smart homes. The global desire of consumers to rely on RERs such as solar energy, and wind energy has increased dramatically. Similarly, the IT technologies are also playing their part in smart grid development, such as real time data monitoring. On the other hand, with the advancement of these IT technologies in smart meters, the privacy of customers is also at risk Smart grid utility knows the exact generation of any specific renewable resource in a specific interval of time. Utility need to monitor this real time data for load forecasting and implementation of demand response scenarios. However, the utility may misuse the data and may increase the prices for specific time slots when RERs are not present. Similarly, real time monitoring of data can lead to estimation of life routines of users such as sleeping habits, time of usage of heavy appliances, and lifestyle. In this paper, a Differential Privacy based real time Load Monitoring approach (DPLM) is proposed that preserve the privacy of users by masking the values of load in such a way that utility will not be able to judge the usage of specific RER and the daily routine of any smart meter user. We compare our scheme with Gaussian Noise Differential Privacy (GNDP) strategy. Experimental results validate that our DPLM approach provides a desirable solution to protect smart grid user's privacy by efficient noise addition and peak value protection along with having an error rate of only 1.5%. (C) 2019 Elsevier Inc. All rights reserved.
机译:传统电网系统中的能源成本增加和增加损失引发了可再生能源(RERS)在智能家居中的集成。消费者依赖太阳能等RERS的全球愿望急剧增加。同样,IT技术也在播放他们的智能电网开发部分,例如实时数据监控。另一方面,随着这些IT技术的推进,在智能电表中,客户的隐私也在风险智能电网公用事业公司知道在特定时间间隔内的任何特定可再生资源的确切生成。实用程序需要监控加载预测和需求响应方案的负载预测和实施的实时数据。但是,该实用程序可能会滥用数据,并且当RER不存在时可能会增加特定时隙的价格。同样,数据的实时监测可能导致用户的生活常规估计睡眠习惯,沉重设备的使用时间和生活方式。在本文中,提出了一种基于差分隐私的实时负荷监测方法(DPLM),以通过掩盖ucation将无法判断特定RER和每日使用的方式来保留用户的隐私。任何智能仪表用户的例程。我们将我们的计划与高斯噪声差别隐私(GNDP)策略进行比较。实验结果验证,我们的DPLM方法提供了一种理想的解决方案,以通过高效的噪声加法和峰值保护,以及峰值保护仅具有1.5%的错误率来保护智能电网用户的隐私。 (c)2019 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号