首页> 外文期刊>Journal of Parallel and Distributed Computing >Differential privacy for renewable energy resources based smart metering
【24h】

Differential privacy for renewable energy resources based smart metering

机译:基于智能计量的可再生能源的差异隐私

获取原文
获取原文并翻译 | 示例

摘要

The increasing energy costs and increase in losses in traditional power grid system triggered the integration of Renewable Energy Resources (RERs) in smart homes. The global desire of consumers to rely on RERs such as solar energy, and wind energy has increased dramatically. Similarly, the IT technologies are also playing their part in smart grid development, such as real time data monitoring. On the other hand, with the advancement of these IT technologies in smart meters, the privacy of customers is also at risk Smart grid utility knows the exact generation of any specific renewable resource in a specific interval of time. Utility need to monitor this real time data for load forecasting and implementation of demand response scenarios. However, the utility may misuse the data and may increase the prices for specific time slots when RERs are not present. Similarly, real time monitoring of data can lead to estimation of life routines of users such as sleeping habits, time of usage of heavy appliances, and lifestyle. In this paper, a Differential Privacy based real time Load Monitoring approach (DPLM) is proposed that preserve the privacy of users by masking the values of load in such a way that utility will not be able to judge the usage of specific RER and the daily routine of any smart meter user. We compare our scheme with Gaussian Noise Differential Privacy (GNDP) strategy. Experimental results validate that our DPLM approach provides a desirable solution to protect smart grid user's privacy by efficient noise addition and peak value protection along with having an error rate of only 1.5%. (C) 2019 Elsevier Inc. All rights reserved.
机译:传统电网系统中不断增加的能源成本和损失的增加引发了可再生能源(RER)与智能家居的整合。消费者在全球范围内依赖太阳能和风能等RER的需求急剧增加。同样,IT技术也在智能电网开发中发挥作用,例如实时数据监视。另一方面,随着智能电表中这些IT技术的发展,客户的隐私也面临风险。智能电网公用事业公司知道在特定的时间间隔内准确生成任何特定的可再生资源。公用事业需要监视此实时数据,以进行负载预测和实施需求响应方案。但是,当不存在RER时,公用程序可能会滥用数据并可能提高特定时隙的价格。类似地,对数据的实时监视可以导致估计用户的生活习惯,例如睡眠习惯,重型设备的使用时间和生活方式。在本文中,提出了一种基于差分隐私的实时负载监视方法(DPLM),该方法通过掩盖负载的值来保护用户的隐私,以至于实用程序将无法判断特定RER和每日的使用情况。任何智能电表用户的常规操作。我们将我们的方案与高斯噪声差分隐私(GNDP)策略进行了比较。实验结果证明,我们的DPLM方法通过有效的噪声添加和峰值保护以及仅1.5%的错误率,提供了理想的解决方案来保护智能电网用户的隐私。 (C)2019 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号