首页> 外文期刊>Journal of numerical mathematics >Numerical approximations for singularly perturbed differential-difference BVPs with layer and oscillatory behavior
【24h】

Numerical approximations for singularly perturbed differential-difference BVPs with layer and oscillatory behavior

机译:具有层和振荡行为的奇摄动差分差BVP的数值逼近

获取原文
获取原文并翻译 | 示例

摘要

A numerical approximation for singularly perturbed linear second order boundary value problem with small shift (depending on a small parameter) in the convection term is considered. When the delay argument is sufficiently small say of o(e), to tackle the delay term, we have used Taylor's series expansion and presented a numerical approach to solve such type of boundary value problem. But in the case when the delay is of not sufficiently small the approach of simply expanding the shift term in Taylor's series and truncating may lead to misleading results, this is the motivation for this work. In this paper, we present a numerical scheme for solving such type of boundary value problems, which works nicely when delay argument is of O(ε). To handle the delay argument, we construct a special type of mesh so that the term containing delay lies on nodal points after discretization. An extensive amount of analysis has been carried out to prove the uniform convergence with respect to the singular perturbation parameter. Numerical results are given to illustrate the parameter-uniform convergence of the numerical approximations. Comparisons of the numerical solutions are performed with standard upwind finite difference scheme on a special type of mesh to demonstrate the efficiency of the method.
机译:考虑对流项中具有小位移(取决于小参数)的奇摄动线性二阶边值问题的数值近似。当延迟参数足以说出o(e)时,为了解决延迟项,我们使用了泰勒级数展开式,并提出了一种数值方法来解决这种类型的边值问题。但是,当延迟不够小时,简单地扩展泰勒级数中的移位项并截断的方法可能会导致产生误导性的结果,这就是这项工作的动机。在本文中,我们提出了一种解决这类边值问题的数值方案,当延迟参数为O(ε)时,该方案效果很好。为了处理延迟参数,我们构造了一种特殊类型的网格,以使包含延迟的术语位于离散化之后的节点上。已经进行了大量的分析以证明关于奇异摄动参数的一致收敛。给出数值结果以说明数值逼近的参数一致收敛。使用标准的迎风有限差分方案对一种特殊类型的网格进行了数值解的比较,以证明该方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号