首页> 外文期刊>Journal of neural engineering >Hidden Markov model and suppor vector machine based decoding of finger movements using electrocorticography
【24h】

Hidden Markov model and suppor vector machine based decoding of finger movements using electrocorticography

机译:隐马尔可夫模型和支持向量机基于脑皮层的手指运动解码

获取原文
获取原文并翻译 | 示例

摘要

Support vector machines (SVM) have developed into a gold standard for accurate classification in brain-computer interfaces (BCI). The choice of the most appropriate classifier for a particular application depends on several characteristics in addition to decoding accuracy. Here we investigate the implementation of hidden Markov models (HMM) for online BCIs and discuss strategies to improve their performance. Approach. We compare the SVM, serving as a reference, and HMMs for classifying discrete finger movements obtained from electrocorticograms of four subjects performing a finger tapping experiment. The classifier decisions are based on a subset of low-frequency time domain and high gamma oscillation features. Main results. We show that decoding optimization between the two approaches is due to the way features are extracted and selected and less dependent on the classifier. An additional gain in HMM performance of up to 6% was obtained by introducing model constraints. Comparable accuracies of up to 90% were achieved with both SVM and HMM with the high gamma cortical response providing the most important decoding information for both techniques. Significance. We discuss technical HMM characteristics and adaptations in the context of the presented data as well as for general BCI applications. Our findings suggest that HMMs and their characteristics are promising for efficient online BCIs.
机译:支持向量机(SVM)已发展成为在脑机接口(BCI)中进行准确分类的金标准。对于特定应用,最合适的分类器的选择除解码精度外还取决于几个特性。在这里,我们研究了在线BCI的隐马尔可夫模型(HMM)的实现,并讨论了提高其性能的策略。方法。我们将SVM(用作参考)与HMM进行比较,以对从执行手指敲击实验的四个对象的大脑皮层图获得的离散手指运动进行分类。分类器决策基于低频时域和高伽玛振荡特征的子集。主要结果。我们表明,两种方法之间的解码优化是由于特征的提取和选择方式而引起的,并且对分类器的依赖性较小。通过引入模型约束,HMM性能可额外提高6%。 SVM和HMM均可达到高达90%的可比精度,而高伽马皮质响应可为两种技术提供最重要的解码信息。意义。我们将在提供的数据以及一般BCI应用的背景下讨论HMM技术的特性和适应性。我们的发现表明,HMM及其特征对于有效的在线BCI很有前途。

著录项

  • 来源
    《Journal of neural engineering》 |2013年第5期|056020.1-056020.14|共14页
  • 作者单位

    Chair for Healthcare Telematics and Medical Engineering, Otto-von-Guericke-University Magdeburg, Postfach 4120, D-39016 Magdeburg, Germany, Institute for Robotics and Cognitive Systems, University of Luebeck, Ratzeburger Allee 160, D-23538 Luebeck, Germany;

    Chair for Healthcare Telematics and Medical Engineering, Otto-von-Guericke-University Magdeburg, Postfach 4120, D-39016 Magdeburg, Germany;

    Chair for Healthcare Telematics and Medical Engineering, Otto-von-Guericke-University Magdeburg, Postfach 4120, D-39016 Magdeburg, Germany;

    Department of Neurological Surgery, University of California, San Francisco, 505 Parnassus Ave., M-779 San Francisco, CA 94143-0112, USA,Department of Psychology and the Helen Wills Neuroscience Institute, University of California, Berkeley, 132 Barker Hall, Berkeley, CA 94720-3190, USA;

    Department of Neurological Surgery, University of California, San Francisco, 505 Parnassus Ave., M-779 San Francisco, CA 94143-0112, USA;

    Clinic of Neurology, Otto-von-Guericke-University Magdeburg, Leipziger Strasse 44, D-39120 Magdeburg, Germany,Leibniz-Institute for Neurobiology, Brenneckestrasse 6, D-39118 Magdeburg, Germany,German Center for Neurodegenerative Diseases (DZNE), Leipziger Strasse 44, D-39120 Magdeburg, Germany,Center of Behavioural Brain Sciences (CBBS), Universitaetsplatz 2, D-39106 Magdeburg, Germany;

    Department of Psychology and the Helen Wills Neuroscience Institute, University of California, Berkeley, 132 Barker Hall, Berkeley, CA 94720-3190, USA,Applied Neurocognitive Psychology, Faculty Ⅵ, Carl-von-Ossietzky University, D-26111 Oldenburg, Germany;

    Chair for Healthcare Telematics and Medical Engineering, Otto-von-Guericke-University Magdeburg, Postfach 4120, D-39016 Magdeburg, Germany;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号