首页> 外文期刊>Journal of machine learning research >Bridging Viterbi and Posterior Decoding: A Generalized Risk Approach to Hidden Path Inference Based on Hidden Markov Models
【24h】

Bridging Viterbi and Posterior Decoding: A Generalized Risk Approach to Hidden Path Inference Based on Hidden Markov Models

机译:维特比桥接和后验解码:基于隐马尔可夫模型的广义风险隐路径推理

获取原文

摘要

Motivated by the unceasing interest in hidden Markov models(HMMs), this paper re-examines hidden path inference in thesemodels, using primarily a risk-based framework. While the mostcommon maximum a posteriori (MAP), or Viterbi, pathestimator and the minimum error, or PosteriorDecoder (PD) have long been around, other path estimators,or decoders, have been either only hinted at or applied morerecently and in dedicated applications generally unfamiliar tothe statistical learning community. Over a decade ago, however,a family of algorithmically defined decoders aiming to hybridizethe two standard ones was proposed elsewhere. The present papergives a careful analysis of this hybridization approach,identifies several problems and issues with it and otherpreviously proposed approaches, and proposes practicalresolutions of those. Furthermore, simple modifications of theclassical criteria for hidden path recognition are shown to leadto a new class of decoders. Dynamic programming algorithms tocompute these decoders in the usual forward-backward manner arepresented. A particularly interesting subclass of suchestimators can be also viewed as hybrids of the MAP and PDestimators. Similar to previously proposed MAP-PD hybrids, thenew class is parameterized by a small number of tunableparameters. Unlike their algorithmic predecessors, the new risk-based decoders are more clearly interpretable, and, mostimportantly, work a€?out-of-the boxa€? in practice, which isdemonstrated on some real bioinformatics tasks and data. Somefurther generalizations and applications are discussed in theconclusion. color="gray">
机译:出于对隐马尔可夫模型(HMM)的不断关注的推动,本文主要使用基于风险的框架重新检查了这些模型中的隐性路径推断。尽管最常见的最大后验(MAP)或Viterbi,pathestimator和 minimum error 或 PosteriorDecoder (PD)早已存在,其他路径估计器或解码器只是在最近才被暗示或应用,并且通常在统计学习界不熟悉的专用应用程序中使用。然而,十多年前,在其他地方提出了一系列算法定义的解码器,旨在将两个标准解码器进行混合。本文对这种杂交方法进行了仔细的分析,确定了杂交方法以及其他先前提出的方法的一些问题,并提出了可行的解决方案。此外,示出了对用于隐藏路径识别的经典标准的简单修改,从而导致了新型的解码器。提出了以通常的前-后方式计算这些解码器的动态编程算法。这种估计器的一个特别有趣的子类也可以看作是MAP和PD估计器的混合体。与以前提出的MAP-PD混合器类似,新类通过少量可调参数进行参数化。不同于其算法的前身,新的基于风险的解码器更易于解释,并且最重要的是,它是开箱即用的。在实践中,将在一些实际的生物信息学任务和数据上进行演示。结论中讨论了一些进一步的概括和应用。 color =“ gray”>

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号