首页> 外文期刊>Journal of neural engineering >Context-dependent adaptation improves robustness of myoelectric control for upper-limb prostheses
【24h】

Context-dependent adaptation improves robustness of myoelectric control for upper-limb prostheses

机译:上下文相关的适应能力提高了上肢假体的肌电控制的鲁棒性

获取原文
获取原文并翻译 | 示例

摘要

Objective. Dexterous upper-limb prostheses are available today to restore grasping, but an effective and reliable feed-forward control is still missing. The aim of this work was to improve the robustness and reliability of myoelectric control by using context information from sensors embedded within the prosthesis. Approach. We developed a context-driven myoelectric control scheme (cxMYO) that incorporates the inference of context information from proprioception (inertial measurement unit) and exteroception (force and grip aperture) sensors to modulate the outputs of myoelectric control. Further, a realistic evaluation of the cxMYO was performed online in able-bodied subjects using three functional tasks, during which the cxMYO was compared to a purely machine-learning-based myoelectric control (MYO). Main results. The results demonstrated that utilizing context information decreased the number of unwanted commands, improving the performance (success rate and dropped objects) in all three functional tasks. Specifically, the median number of objects dropped per round with cxMYO was zero in all three tasks and a significant increase in the number of successful transfers was seen in two out of three functional tasks. Additionally, the subjects reported better user experience. Significance. This is the first online evaluation of a method integrating information from multiple on-board prosthesis sensors to modulate the output of a machine-learning-based myoelectric controller. The proposed scheme is general and presents a simple, non-invasive and cost-effective approach for improving the robustness of myoelectric control.
机译:目的。如今,可以使用灵巧的上肢假体来恢复抓握状态,但是仍然缺少有效而可靠的前馈控制。这项工作的目的是通过使用来自植入假体中的传感器的上下文信息来提高肌电控制的鲁棒性和可靠性。方法。我们开发了一种上下文驱动的肌电控制方案(cxMYO),该方案结合了来自本体感受(惯性测量单元)和外部感受(力和抓地力孔径)传感器的上下文信息推断,以调制肌电控制的输出。此外,在身体健全的受试者中使用三个功能任务对cxMYO进行了在线评估,在此期间,将cxMYO与纯基于机器学习的肌电控制(MYO)进行了比较。主要结果。结果表明,利用上下文信息减少了所有三个功能任务中不必要命令的数量,提高了性能(成功率和对象丢失)。具体而言,在所有三个任务中,使用cxMYO丢弃的对象的中位数为零,并且在三个功能任务中的两个中,成功传输的次数显着增加。此外,受试者报告了更好的用户体验。意义。这是对方法进行的首次在线评估,该方法集成了来自多个车载假体传感器的信息,以调制基于机器学习的肌电控制器的输出。所提出的方案是通用的,并且提出了一种简单,无创且具有成本效益的方法来改善肌电控制的鲁棒性。

著录项

  • 来源
    《Journal of neural engineering》 |2017年第5期|056016.1-056016.14|共14页
  • 作者单位

    Department of Trauma Surgery, Neurorehabilitation Systems Research Group, Orthopedics and Plastic Surgery, University Medical Center Göttingen, Göttingen, Germany;

    Department of Trauma Surgery, Neurorehabilitation Systems Research Group, Orthopedics and Plastic Surgery, University Medical Center Göttingen, Göttingen, Germany;

    Institute of Robotics and Mechatronics, DLR, German Aerospace Center, Wessling, Germany;

    Department of Trauma Surgery, Neurorehabilitation Systems Research Group, Orthopedics and Plastic Surgery, University Medical Center Göttingen, Göttingen, Germany,Department of Bioengineering, Imperial College London, London, United Kingdom;

    Department of Trauma Surgery, Neurorehabilitation Systems Research Group, Orthopedics and Plastic Surgery, University Medical Center Göttingen, Göttingen, Germany,Faculty of Medicine, Department of Health Science and Technology, Center for Sensory-Motor Interaction, Fredrik Bajers Vej 7, Aalborg, Denmark;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    context-driven control; myoelectric control; upper-limb prosthesis;

    机译:上下文驱动的控制;肌电控制上肢假肢;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号