首页> 外文会议>Human-computer interaction >DIMENSIONALITY REDUCTION AND CLASSIFICATION OF MYOELECTRIC SIGNALS FOR THE CONTROL OF UPPER-LIMB PROSTHESES
【24h】

DIMENSIONALITY REDUCTION AND CLASSIFICATION OF MYOELECTRIC SIGNALS FOR THE CONTROL OF UPPER-LIMB PROSTHESES

机译:控制上肢假体的肌电信号的维数减少和分类

获取原文
获取原文并翻译 | 示例

摘要

The classification of prehensile motions from myoelectric signals (MES) for the control of prostheses or as nonverbal input to computers is receiving much attention. Numerous methods and devices have been developed for the classification of MES for different grip types. In this contribution, we extend the established "Guilin Hills Selection Method", a statistical cluster analysis technique for MES earlier described in [1], with a "Spyglass" procedure. When the measurements taken during the operation of the prostheses lead to an ambiguous classification, an alternative muscle-feature combination is chosen to remove the ambiguity. This spyglass enhancement allows us to differentiate hand-positions with a high accuracy and a very good repeatability.rnExperimental results, based on the analysis of several hundred data sets, recorded with different individuals, show a better discrimination of hand positions compared to our previously employed, standard neural-net solution [2,3]. Furthermore, we were able to reduce the number of myoelectric skin-surface sensors for the control of an electrically powered hand prostheses. In this contribution, we illustrate the extended Guilin Hills classifier method with a set of standard time-domain features, derived from the MES of two sensors and differentiate four distinct hand-positions as an example.
机译:用于控制假体或作为计算机非语言输入的肌电信号(MES)的柔韧性运动的分类正受到广泛关注。已经开发出许多方法和装置用于对不同握持类型的MES进行分类。在此贡献中,我们使用“望远镜”程序扩展了已建立的“桂林希尔斯选择方法”(一种针对MES的统计聚类分析技术),该方法先前在[1]中进行了描述。当假体手术期间进行的测量导致模棱两可的分类时,选择另一种肌肉功能组合以消除歧义。这种望远镜增强功能使我们能够以较高的精度和良好的可重复性来区分手部位置。rn与对以前使用的人员相比,基于对数百个数据集进行分析的不同个人记录的实验结果显示出更好的手部位置辨别,标准神经网络解决方案[2,3]。此外,我们能够减少用于控制电动手部假体的肌电皮肤表面传感器的数量。在此贡献中,我们举例说明了扩展的桂林希尔斯分类器方法,该方法具有一组标准时域特征,该特征来自两个传感器的MES并区分四个不同的手部位置。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号