首页> 外文期刊>Journal of intelligent material systems and structures >Pattern recognition framework using asynchronous discrete binary data for condition and damage assessment in plate-like structures
【24h】

Pattern recognition framework using asynchronous discrete binary data for condition and damage assessment in plate-like structures

机译:模式识别框架使用异步离散二进制数据进行板状结构的条件和损伤评估

获取原文
获取原文并翻译 | 示例

摘要

Recent advances in energy harvesting technologies have led to the evolution of self-powered structural health monitoring techniques that are energy-efficient. Concurrent to the emergence of self-powered sensing has been the development of power-efficient data communication protocols. One such technology is an energy-aware pulse communication architecture that employs ultrasonic pulses through the material substrate for information forwarding. This results in limited discrete binary data that raises the need for new data analysis methods for structural health monitoring purposes. A pattern recognition framework that allows interpretation of the resulting asynchronous discrete binary data for condition and damage assessment in plate-like structures is presented in this article. The proposed pattern recognition framework is based on integration of image-based pattern recognition using anomaly detection, a pattern anomaly measure, a focal density concept, and the k-nearest neighbor algorithm. Using numerical simulations, damage indication parameters were determined from the strain response of dynamically loaded plates. Simulated test cases considering different levels of damage severity, single and multiple damage regions, loading conditions, and measurement noise were studied to evaluate the effectiveness and robustness of the strategy. Furthermore, the effect of sensor density on the proposed strategy was explored. Results demonstrate satisfactory performance and robustness of the proposed pattern recognition framework for localized damage detection in plate-like structures using limited and low-resolution discrete binary data.
机译:能源收集技术的最新进展导致了能够节能的自动结构健康监测技术的演变。并发到自动传感的出现一直是高效数据通信协议的发展。一种这样的技术是能量感知的脉冲通信架构,其采用超声波脉冲通过材料基板进行信息转发。这导致有限的离散二进制数据,这提高了对结构健康监测目的的新数据分析方法的需求。本文介绍了允许解释所得到的异步离散二进制数据的模式识别框架,以便在本文中介绍了板状结构中的条件和损伤评估。所提出的模式识别框架基于使用异常检测的基于图像的模式识别的集成,图案异常测量,焦密密度概念和k最近邻算法。使用数值模拟,从动态装载板的应变响应确定损伤指示参数。研究了考虑不同水平的伤害严重程度,单一和多次损伤区域,装载条件和测量噪声的模拟测试用例,以评估策略的有效性和鲁棒性。此外,探讨了传感器密度对拟议战略的影响。结果展示了使用有限且低分辨率离散二进制数据的板状结构中所提出的模式识别框架的令人满意的性能和稳健性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号