首页> 外文期刊>Journal of information and computational science >PCA-SVM Model Building and Application for Financial Distress Predication of Listed Companies
【24h】

PCA-SVM Model Building and Application for Financial Distress Predication of Listed Companies

机译:上市公司财务困境预测的PCA-SVM模型建立与应用

获取原文
获取原文并翻译 | 示例

摘要

Principal Component Analysis (PCA) is a technique to simplify data collection. Support Vector Machine (SVM) has advantages of suitability of dealing with small sample problem, high dimension, and strong performance of generalization, etc. Therefore, this paper combines the two methods, and proposes a financial crisis predication model by integration of principal component analysis into support vector machine. Firstly, complete data pre-processing through extracting principal components of sample set, compress effectively dimension of sample set, simplify input vectors, and eliminate col-linearity between variables; secondly, train SVM through training set, and on this basis make use of financial, data of listed companies to conduct empirical analysis of financial predication. Simulation results show that financial crisis prediction model built based on PCA-SVM algorithm has superior learning ability and generalization ability, can effectively reduce the dimensions of sample set, and further improve accuracy of the financial prediction, with good feasibility and practical significance.
机译:主成分分析(PCA)是一种简化数据收集的技术。支持向量机(SVM)具有适合处理小样本问题,维数高,泛化性能强等优点。因此,本文将两种方法结合起来,通过综合主成分分析提出了金融危机预测模型。支持向量机。首先,通过提取样本集的主成分,有效压缩样本集的维数,简化输入向量,消除变量之间的共线性,完成数据预处理。其次,通过训练集对支持向量机进行训练,并在此基础上利用上市公司的财务数据对财务预测进行实证分析。仿真结果表明,基于PCA-SVM算法构建的金融危机预测模型具有优越的学习能力和泛化能力,可以有效地减少样本集的规模,进一步提高金融预测的准确性,具有良好的可行性和现实意义。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号