首页> 外文期刊>Journal of Field Robotics >Consistent decentralized cooperative localization for autonomous vehicles using LiDAR, GNSS, and HD maps
【24h】

Consistent decentralized cooperative localization for autonomous vehicles using LiDAR, GNSS, and HD maps

机译:使用LIDAR,GNSS和HD地图的自治车辆一致的分散合作定位

获取原文
获取原文并翻译 | 示例

摘要

To navigate autonomously, a vehicle must be able to localize itself with respect to its driving environment and the vehicles with which it interacts. This study presents a decentralized cooperative localization method. It is based on the exchange of local dynamic maps (LDM), which are cyber-physical representations of the physical driving environment containing poses and kinematic information about nearby vehicles. An LDM acts as an abstraction layer that makes the cooperation framework sensor-agnostic, and it can even improve the localization of a sensorless communicating vehicle. With this goal in mind, this study focuses on the property of consistency in LDM estimates. Uncertainty in the estimates needs to be properly modeled, so that the estimation error can be statistically bounded for a given confidence level. To obtain a consistent system, we first introduce a decentralized fusion framework that can cope with LDMs whose errors have an unknown degree of correlation. Second, we present a consistent method for estimating the relative pose between vehicles, using a two-dimensional LiDAR (light detection and ranging) with a point-to-line metric within an iterative-closest-point approach, combined with communicated polygonal shape models; Finally, we add a bias estimator to reduce position errors when nondifferential GNSS (global navigation satellite system) receivers are used, based on visual observations of features geo-referenced in a high-definition map. Real experiments were conducted, and the consistency of our approach was demonstrated on a platooning scenario using two experimental vehicles. The full experimental data set used in this study is publicly available.
机译:为了自主导航,车辆必须能够对其驾驶环境和其交互的车辆本身来本身。本研究提出了一种分散的合作定位方法。它基于局部动态地图(LDM)的交换,这是包含关于附近车辆的姿势和运动信息的物理驾驶环境的网络物理表示。 LDM充当抽象层,使得合作框架传感器无关,甚至可以改善无传感器通信车辆的定位。凭借这项目标,这项研究重点介绍了LDM估计中一致性的财产。需要适当建模估计中的不确定性,以便为给定的置信水平统计界定估计误差。为了获得一致的系统,我们首先介绍一个分散的融合框架,可以应对的LDM,其误差具有未知程度的相关程度。其次,我们介绍了一种用于估计车辆之间的相对姿势的一致方法,使用二维激光雷达(光检测和测距)在迭代 - 最接近点接近的点对线度量,与通信的多边形形状模型组合;最后,当使用了在高清晰度地图中的特征地理参考的特征的视觉观察时,添加偏置估计器以减少位置误差以减少使用非异常GNSS(全局导航卫星系统)接收器。进行了真实实验,并在使用两个实验车辆的公用情景上证明了我们方法的一致性。本研究中使用的完整实验数据集是公开的。

著录项

  • 来源
    《Journal of Field Robotics》 |2021年第4期|552-571|共20页
  • 作者单位

    Computer Science and Engineering Department Universite de Technologie de Compiegne CNRS Heudiasyc UMR 7253 Compiegne France;

    Computer Science and Engineering Department Universite de Technologie de Compiegne CNRS Heudiasyc UMR 7253 Compiegne France;

    Computer Science and Engineering Department Universite de Technologie de Compiegne CNRS Heudiasyc UMR 7253 Compiegne France;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    cooperative robots; localization; perception;

    机译:合作机器人;本土化;洞察力;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号