首页> 外文期刊>Journal of robotic systems >Radar-Based Perception for Autonomous Outdoor Vehicles
【24h】

Radar-Based Perception for Autonomous Outdoor Vehicles

机译:基于雷达的自动驾驶室外感知器

获取原文
获取原文并翻译 | 示例

摘要

Autonomous vehicle operations in outdoor environments challenge robotic perception. Construction, mining, agriculture, and planetary exploration environments are examples in which the presence of dust, fog, rain, changing illumination due to low sun angles, and lack of contrast can dramatically degrade conventional stereo and laser sensing. Nonetheless, environment perception can still succeed under compromised visibility through the use of a millimeter-wave radar. Radar also allows for multiple object detection within a single beam, whereas other range sensors are limited to one target return per emission. However, radar has shortcomings as well, such as a large footprint, specularity effects, and limited range resolution, all of which may result in poor environment survey or difficulty in interpretation. This paper presents a novel method for ground segmentation using a millimeter-wave radar mounted on a ground vehicle. Issues relevant to short-range perception in an outdoor environment are described along with field experiments and a quantitative comparison to laser data. The ability to classify the ground is successfully demonstrated in clear and low-visibility conditions, and significant improvement in range accuracy is shown. Finally, conclusions are drawn on the utility of millimeter-wave radar as a robotic sensor for persistent and accurate perception in natural scenarios.
机译:室外环境中的自动驾驶车辆挑战了机器人的感知能力。建筑,采矿,农业和行星勘探环境就是这样的例子,其中灰尘,雾,雨,由于太阳角度低而变化的照明以及缺乏对比度会大大降低传统的立体感和激光感测能力。但是,通过使用毫米波雷达,在可见度受损的情况下,环境感知仍然可以成功。雷达还允许在单个光束内检测多个物体,而其他距离传感器则限于每次发射一个目标返回。但是,雷达也有缺点,例如占用空间大,镜面反射效果好,距离分辨率有限,所有这些都可能导致不良的环境调查或难以解释。本文提出了一种使用安装在地面车辆上的毫米波雷达进行地面分割的新方法。描述了与室外环境中的短距离感知有关的问题,以及野外实验和与激光数据的定量比较。在清晰和低可见度的条件下成功地证明了对地面进行分类的能力,并且显示了测距精度的显着提高。最后,得出有关毫米波雷达作为机器人传感器的效用的结论,该传感器可在自然情况下持续且准确地感知。

著录项

  • 来源
    《Journal of robotic systems》 |2011年第6期|p.894-913|共20页
  • 作者单位

    Department of Engineering for Innovation, University of Salento, Via Arnesano, 73100 Lecce, Italy;

    Australian Centre for Field Robotics, University of Sydney, Rose Street Building (J04), 2006 Sydney, Australia;

    Australian Centre for Field Robotics, University of Sydney, Rose Street Building (J04), 2006 Sydney, Australia;

    Australian Centre for Field Robotics, University of Sydney, Rose Street Building (J04), 2006 Sydney, Australia;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号