首页> 外文期刊>Journal of Electronic Packaging >The Doping Dependence of the Thermal Conductivity of Bulk Gallium Nitride Substrates
【24h】

The Doping Dependence of the Thermal Conductivity of Bulk Gallium Nitride Substrates

机译:散装氮化镓基材的热导率的掺杂依赖性

获取原文
获取原文并翻译 | 示例
       

摘要

Gallium nitride (GaN) has emerged as one of the most attractive base materials for next-generation high-power and high-frequency electronic devices. Recent efforts have focused on realizing vertical power device structures such as in situ oxide, GaN inter-layer based vertical trench metal-oxide-semiconductor field-effect transistors (OG-FETs). Unfortunately, the higher-power density of GaN electronics inevitably leads to considerable device self-heating which impacts device performance and reliability. Halide vapor-phase epitaxy (HVPE) is currently the most common approach for manufacturing commercial GaN substrates used to build vertical GaN transistors. Vertical device structures consist of GaN layers of diverse doping levels. Hence, it is of crucial importance to measure and understand how the dopant type (Si, Fe, and Mg), doping level, and crystal quality alter the thermal conductivity of HVPE-grown bulk GaN. In this work, a steady-state thermoreflectance (SSTR) technique was used to measure the thermal conductivity of HVPE-grown GaN substrates employing different doping schemes and levels. Structural and electrical characterization methods including X-ray diffraction (XRD), secondary-ion mass spectrometry (SIMS), Raman spectroscopy, and Hall-effect measurements were used to determine and compare the GaN crystal quality, dislocation density, doping level, and carrier concentration. Using this comprehensive suite of characterization methods, the interrelation among structural/electrical parameters and the thermal conductivity of bulk GaN substrates was investigated. While doping is evidenced to reduce the GaN thermal conductivity, the highest thermal conductivity (201 W/mK) is observed in a heavily Si-doped (1-5.00 × 10~18 cm~-3) substrate with the highest ciystal-line quality. This suggests that phonon-dislocation scattering dominates over phonon-impurity scattering in the tested HVPE-grown bulk GaN substrates. The results provide useful information for designing thermal management solutions for vertical GaN power electronic devices.
机译:氮化镓(GaN)已成为下一代大功率和高频电子设备最具吸引力的基础材料之一。最近的努力专注于实现垂直功率器件结构,例如原位氧化物,基于GaN层间的垂直沟槽金属氧化物半导体场效应晶体管(OG-FET)。不幸的是,GaN电子产品的较高功率密度不可避免地导致相当大的设备自加热,这会影响装置性能和可靠性。卤化物气相外延(HVPE)是目前制造用于构建垂直GaN晶体管的商业GaN基材的最常见方法。垂直器件结构由GaN层组成的不同掺杂水平。因此,衡量和理解掺杂剂类型(Si,Fe和Mg),掺杂水平和晶体质量如何改变HVPE-生长的散装GaN的导热率是至关重要的。在这项工作中,使用稳态热反射(SSTR)技术来测量采用不同掺杂方案和水平的HVPE-生长的GaN基材的导热率。包括X射线衍射(XRD),二次离子质谱(SIMS),拉曼光谱和霍尔效应测量的结构和电学表征方法用于确定和比较GaN晶体质量,位错密度,掺杂水平和载体专注。使用这种全面的表征方法,研究了结构/电气参数的相互关系和散装GaN衬底的热导率。在证明掺杂以降低GaN导热率时,在具有最高的Ciystal-Line质量的大掺杂(1-5.00×10〜18cm〜3)底板中观察到最高导热率(201瓦/ mk) 。这表明声子位错散射在经过测试的HVPE生长的散装GaN基材中的声子 - 杂质散射占主导地位。结果为设计用于垂直GaN电力电子设备的热管理解决方案提供了有用的信息。

著录项

  • 来源
    《Journal of Electronic Packaging》 |2020年第4期|041112.1-041112.10|共10页
  • 作者单位

    Department of Mechanical Engineering The Pennsylvania State University University Park PA 16802;

    Department of Mechanical Engineering The Pennsylvania State University University Park PA 16802;

    Department of Mechanical Engineering Texas Center for Superconductivity at UH (TcSUH) University of Houston Houston TX 77204 Department of Mechanical Engineering Advanced Manufacturing Institute (AMI) University of Houston Houston TX 77204;

    Kyma Technologies Inc. Raleigh NC 27617;

    Department of Mechanical Engineering The Pennsylvania State University University Park PA 16802;

    Department of Mechanical Engineering The Pennsylvania State University University Park PA 16802;

    Department of Mechanical Engineering The Pennsylvania State University University Park PA 16802;

    Department of Electrical Engineering Stanford University Stanford CA 94305;

    Department of Materials Science and Engineering The Pennsylvania State University University Park PA 16802;

    Department of Materials Science and Engineering The Pennsylvania State University University Park PA 16802;

    Department of Materials Science and Engineering The Pennsylvania State University University Park PA 16802;

    Department of Electrical Engineering Stanford University Stanford CA 94305;

    Department of Mechanical Engineering Texas Center for Superconductivity at UH (TcSUH) University of Houston Houston TX 77204 Department of Mechanical Engineering Advanced Manufacturing Institute (AMI) University of Houston Houston TX 77204;

    Department of Mechanical Engineering The Pennsylvania State University University Park PA 16802;

    Department of Mechanical Engineering The Pennsylvania State University University Park PA 16802;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    gallium nitride (GaN); power electronics; Raman spectroscopy; steady-state thermoreflectance; vertical power devices; wide bandgap semiconductors;

    机译:氮化镓(GaN);电力电子;拉曼光谱;稳态热反射;垂直功率器件;宽带隙半导体;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号