首页> 外文会议>Symposium on GaN, AIN, InN and Related Materials >Temperature and Dislocation Density Effects on the Thermal Conductivity of Bulk Gallium Nitride
【24h】

Temperature and Dislocation Density Effects on the Thermal Conductivity of Bulk Gallium Nitride

机译:对氮化物热导率的温度和位错密度影响

获取原文

摘要

The performance of III-Nitride high power, high frequency transistors and laser diodes is intimately connected with the ability to dissipate heat from the junction to the substrate. The thermal conductivity was characterized by the three omega method for undoped and doped gallium nitride bulk substrates grown by HVPE from room temperature to 450 K. The thickness of the samples varied from thin film epilayers on sapphire to 2 millimeter thick free standing samples. Dislocation density of the substrates was measured by imaging camodoluminescence, SIMS was used to measure impurity levels of oxygen, hydrogen, silicon, and iron, while carrier concentrations and resistivity were determined from electrical measurements and EPR. A semi-insulating, 2 mm thick iron doped sample had the highest thermal conductivity of 230W/K-m at room temperature. Undoped samples had comparable, but lower thermal conductivities throughout the temperature range from 300-450 K. By comparing these results with previously reported experimental results including those on MOCVD grown GaN free of grain boundaries, we establish an empirical relationship in a compact formula that relates the thermal conductivity of GaN and the dislocation density with three different regimes of low, intermediate, and high dislocation densities. In the high dislocation regime, the thermal conductivity improves significantly with reduction of dislocation densities. As material quality continues to improve it remains to be seen if in the low dislocation density regime, thermal conductivities will approach 300 W/K-m or plateau out near 250 W/K-m. As point defects start to limit the thermal conductivity when dislocation density becomes very low, gallium vacancies are expected to play an increasing role. Iron is postulated to substitute on the gallium site. The indication from this study is that iron doping at concentration of 10~(18) cm~(-3) is not limiting the thermal conductivity in the 300-450 K range.
机译:III-氮化物高功率,高频晶体管和激光二极管的性能与从连接到基板的连接散热的能力密切相关。热导率的特征在于由HVPE从室温到450k生长的未掺杂和掺杂的氮化镓块状基质的三个ω方法的表征。样品的厚度从蓝宝石上的薄膜脱膜变化到2毫米厚的自由站样品。通过成像Camodolisingcence测量底物的位错密度,使用SIMS来测量氧气,氢气,硅和铁的杂质水平,而载流子浓度和电阻率从电测量和EPR确定。半绝缘,2mm厚的铁掺杂样品在室温下具有230W / K-M的最高导热率。未掺杂的样品具有可比性,但在整个温度范围内的热导流率从300-450K的温度范围内比较。通过将这些结果与先前报道的实验结果进行比较,包括在没有晶界的MOCVD生长GaN中的实验结果,我们在紧凑的公式中建立了一个涉及的实证关系GaN的导热率和脱位密度具有三种不同的低,中间体和高位脱位密度的三种不同。在高位脱位方案中,导热率随着脱位密度的降低而显着提高。随着材料质量继续提高,如果在低位脱位密度方案中,仍有待观察,热导体将接近300W / K-M或高原近250W / K-M。当点缺陷开始时,当位错密度变得非常低时,开始限制导热率,预计镓空缺将发挥越来越大的作用。将铁发布以替代镓遗址。本研究的指示是浓度为10〜(18)cm〜(-3)的铁掺杂不是限制300-450k范围内的导热率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号