首页> 外文期刊>Journal of Computer Assisted Learning >Automatic identification of knowledge-transforming content in argument essays developed from multiple sources
【24h】

Automatic identification of knowledge-transforming content in argument essays developed from multiple sources

机译:从多个来源开发的论证论文中的知识转换内容的自动识别

获取原文
获取原文并翻译 | 示例

摘要

Developing knowledge-transforming skills in writing may help students increase learning by actively building knowledge, regardless of the domain. However, many undergraduate students struggle to transform knowledge when drafting essays based on multiple sources. Writing analytics can be used to scaffold knowledge transforming as writers bring evidence to bear in supporting claims. We investigated how to automatically identify sentences representing knowledge transformation in argumentative essays. A synthesis of cognitive theories of writing and Bloom's typology identified 22 linguistic features to model processes of knowledge transforming in a corpus of 38 undergraduates' essays. Findings indicate undergraduates mostly paraphrase or copy information from multiple sources rather than engage deeply with sources' content. Eight linguistic features were important for discriminating evidential sentences as telling versus transforming source knowledge. We trained a machine learning algorithm that accurately classified nearly three of four evidential sentences as knowledge-telling or knowledge-transforming, offering potential for use in future research.
机译:以书面形式发展知识转型技巧可能有助于学生通过积极建立知识来增加学习,无论域名如何。然而,许多本科生在基于多种来源起草论文时,努力改变知识。写作分析可用于脚手架知识转化,因为作家带来证据支持支持索赔。我们调查了如何自动识别代表争论论文中的知识转型的句子。写作和盛开的类型学的认知理论的合成确定了在38人本科生论文中的知识转化过程中的建模过程。调查结果表明本科生大多数释放或复制来自多个来源的信息,而不是使用来源的内容来实现。八种语言特征对于鉴别证据句而言,与转换源知识相比是很重要的。我们培训了一种机器学习算法,可将近三个证明句中的机器学习算法视为知识讲述或知识转型,提供未来研究的潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号