首页> 外文期刊>Journal of computational science >Discontinuous Petrov-Galerkin method based on the optimal test space norm for steady transport problems in one space dimension
【24h】

Discontinuous Petrov-Galerkin method based on the optimal test space norm for steady transport problems in one space dimension

机译:基于最优测试空间范数的不连续Petrov-Galerkin方法求解一维空间稳定运输问题

获取原文
获取原文并翻译 | 示例

摘要

We revisit the finite element analysis of convection-dominated flow problems within the recently developed Discontinuous Petrov-Galerkin (DPG) variational framework. We demonstrate how test function spaces that guarantee numerical stability can be computed automatically with respect to the optimal test space norm. This makes the DPC method not only stable but also robust, that is, uniformly stable with respect to the Peclet number in the current application. We employ discontinuous piecewise Bernstein polynomials as trial functions and construct a subgrid discretization that accounts for the singular perturbation character of the problem to resolve the corresponding optimal test functions. We also show that a smooth B-spline basis has certain computational advantages in the subgrid discretization. The overall effectiveness of the algorithm is demonstrated on two problems for the linear advection-diffusion equation.
机译:我们在最近开发的不连续Petrov-Galerkin(DPG)变分框架内重新研究对流主导的流动问题的有限元分析。我们演示了如何相对于最佳测试空间范数自动计算保证数值稳定性的测试函数空间。这使得DPC方法不仅稳定而且鲁棒,即相对于当前应用中的Peclet数始终稳定。我们采用不连续的分段伯恩斯坦多项式作为试验函数,并构造了一个子网格离散化方法,解决了问题的奇异摄动特征,从而解决了相应的最佳测试函数。我们还表明,平滑的B样条曲线在子网格离散化中具有某些计算优势。在线性对流扩散方程的两个问题上证明了该算法的整体有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号