首页> 外文会议>International conference on mathematics, computational methods reactor physics;MC 2009 >A NON-LINEAR OPTIMAL DISCONTINUOUS PETROV-GALERKIN METHOD FOR STABILISING THE SOLUTION OF THE TRANSPORT EQUATION
【24h】

A NON-LINEAR OPTIMAL DISCONTINUOUS PETROV-GALERKIN METHOD FOR STABILISING THE SOLUTION OF THE TRANSPORT EQUATION

机译:稳定运输方程解的非线性最优间断PETROV-GALERKIN方法

获取原文

摘要

This paper describes a new Non-Linear Discontinuous Petrov-Galerkin (NDPG) method and application to the one-speed Boltzmann Transport Equation (BTE) for space-time problems. The purpose of the method is to remove unwanted oscillations in the transport solution which occur in the vicinity of sharp flux gradients, while improving computational efficiency and numerical accuracy. This is achieved by applying artificial dissipation in the solution gradient direction, internal to an element using a novel finite element (FE) Riemann approach. The amount of dissipation added acts internal to each element. This is done using a gradient-informed scaling of the advection velocities in the stabilisation term. This makes the method in its most general form non-linear. The method is designed to be independent of angular expansion framework. This is demonstrated for the both discrete ordinates (S_N) and spherical harmonics (P_N) descriptions of the angular variable. Results show the scheme performs consistently well in demanding time dependent and multi-dimensional radiation transport problems.
机译:本文介绍了一种新的非线性不连续Petrov-Galerkin(NDPG)方法及其在时空问题的单速Boltzmann输运方程(BTE)中的应用。该方法的目的是消除传输溶液中出现在陡峭通量梯度附近的不希望有的振荡,同时提高计算效率和数值精度。这是通过使用新颖的有限元(FE)Riemann方法在单元内部的溶液梯度方向上应用人工耗散来实现的。添加的耗散量作用于每个元素的内部。这可以通过在稳定项中使用对流速度的梯度通知缩放来完成。这使得该方法在其最一般的形式上是非线性的。该方法被设计为独立于角扩展框架。对于角度变量的离散纵坐标(S_N)和球谐函数(P_N)的描述都证明了这一点。结果表明,该方案在要求严格的时间依赖性和多维辐射传输问题上始终表现良好。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号