首页> 外文期刊>Journal of computational science >An analysis of altitude, citizen science and a convolutional neural network feedback loop on object detection in Unmanned Aerial Systems
【24h】

An analysis of altitude, citizen science and a convolutional neural network feedback loop on object detection in Unmanned Aerial Systems

机译:无人机系统目标检测的高度,公民科学和卷积神经网络反馈回路分析

获取原文
获取原文并翻译 | 示例

摘要

Using automated processes to detect wildlife in uncontrolled outdoor imagery in the field of wildlife ecology is a challenging task. In imagery provided by Unmanned Aerial Systems (UAS), this is especially true where individuals are small and visually similar to background substrates. To address these challenges, this work presents an automated feedback loop which can operate on large scale imagery, such as UAS generated orthomosaics, to train convolutional neural networks (CNNs) with extremely unbalanced class sizes. This feedback loop was used to help train CNNs using imagery classified by both expert biologists and citizen scientists at the Wildlife@home project. Utilizing the feedback loop dramatically reduced population count error rates from previously published work: from +150% to 3.93% on citizen scientist training data and +88% to +5.24% on expert training data. The system developed was then utilized to investigate the effect of altitude on CNN predictions. The training dataset was split into three subsets depending on the altitude of the imagery (75 m,100 m and 120 m). While the lowest altitude was shown to provide the best predictions of the three (+11.46%), the aggregate data set still provided the best results (-3.93%) indicating that there is greater benefit to be gained from a large data set at this scale, and there is potential benefit to having training data from multiple altitudes. This article is an extended version of "Detecting Wildlife in Unmanned Aerial Systems Imagery using Convolutional Neural Networks Trained with an Automated Feedback Loop" published in the proceedings of the 18th International Conference of Computational Science (ICCS 2018) [1]. (C) 2019 Elsevier B.V. All rights reserved.
机译:在野生生物生态学领域中,使用自动化过程在不受控制的室外图像中检测野生生物是一项艰巨的任务。在无人机系统(UAS)提供的图像中,当个体较小且视觉上与背景底物相似时,尤其如此。为了解决这些挑战,这项工作提出了一种自动反馈回路,该回路可以在大规模图像上运行,例如UAS生成的正镶嵌影像,以训练具有极不平衡的班级规模的卷积神经网络(CNN)。此反馈循环用于通过Wildlife @ home项目中的专家生物学家和公民科学家分类的图像帮助训练CNN。利用反馈回路,以前发表的工作显着降低了人口计数错误率:公民科学家培训数据从+ 150%降低到3.93%,专家培训数据从+ 88%降低到+ 5.24%。然后使用开发的系统调查海拔对CNN预测的影响。根据图像的高度将训练数据集分为三个子集(75 m,100 m和120 m)。虽然最低的高度显示出对这三个区域的预测最佳(+ 11.46%),但汇总数据集仍提供了最佳的结果(-3.93%),表明在此情况下,从大量数据中可以获得更大的收益规模,并且具有来自多个高度的训练数据有潜在的好处。本文是“在使用第18届国际计算科学会议(ICCS 2018)[1]的会议记录中发布的“使用通过自动反馈环训练的卷积神经网络检测无人机系统影像中的野生动物”的扩展版本。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号