首页> 外文期刊>Neurocomputing >Coarse-to-fine object detection in unmanned aerial vehicle imagery using lightweight convolutional neural network and deep motion saliency
【24h】

Coarse-to-fine object detection in unmanned aerial vehicle imagery using lightweight convolutional neural network and deep motion saliency

机译:使用轻质卷积神经网络的无人空中车辆图像中的粗致细物对象检测和深度运动显着性

获取原文
获取原文并翻译 | 示例

摘要

Unmanned aerial vehicles (UAVs) have been widely applied to various fields, facing mass imagery data, object detection in UAV imagery is under extensive research for its significant status in both theoretical study and practical applications. In order to achieve the accurate object detection in UAV imagery on the premise of real-time processing, a coarse-to-fine object detection method for UAV imagery using lightweight convolutional neural network (CNN) and deep motion saliency is proposed in this paper. The proposed method includes three steps: (1) Key frame extraction using image similarity measurement is performed on the UAV imagery to accelerate the successive object detection procedure; (2) Deep features are extracted by PeleeNet, a lightweight CNN, to achieve the coarse object detection on the key frames; (3) LiteFlowNet and objects prior knowledge is utilized to analyze the deep motion saliency map, which further helps to refine the detection results. The detection results on key frames propagate to the temporally nearest non-key frames to achieve the fine detection. Five experiments are conducted to verify the effectiveness of the proposed method on Stanford drone dataset (SDD). The experimental results demonstrate that the proposed method can achieve comparable detection speed but superior accuracy to six state-of-the-art methods. (C) 2019 Elsevier B.V. All rights reserved.
机译:无人驾驶航空公司(无人机)已广泛应用于各种领域,面对大规模图像数据,UAV Imagery的物体检测是在理论研究和实际应用中的重要地位的广泛研究。为了在实时处理的前提下实现UAV图像中的准确对象检测,本文提出了使用轻质卷积神经网络(CNN)和深度运动显着性的UAV图像的粗对物体检测方法。所提出的方法包括三个步骤:(1)使用图像相似度测量的密钥帧提取在UAV图像上执行,以加速连续的对象检测过程; (2)通过Peleenet,轻质CNN提取深度特征,以在关键框架上实现粗物体检测; (3)LiteFlowNet和对象利用现有知识来分析深度运动显着图,这进一步有助于改进检测结果。关键帧的检测结果传播到时间上最近的非关键帧以实现精细检测。进行五次实验以验证提出的方法对斯坦福毒品数据集(SDD)的有效性。实验结果表明,该方法可以实现可比的检测速度,但六种最先进的方法可以实现卓越的准确性。 (c)2019 Elsevier B.v.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2020年第jul20期|555-565|共11页
  • 作者单位

    Beijing Univ Technol Beijing Key Lab Computat Intelligence & Intellige Beijing Peoples R China;

    Beijing Univ Technol Beijing Key Lab Computat Intelligence & Intellige Beijing Peoples R China;

    Beijing Univ Technol Beijing Key Lab Computat Intelligence & Intellige Beijing Peoples R China|Hefei Univ Technol Sch Comp Sci & Informat Engn Hefei Peoples R China;

    Beijing Univ Technol Beijing Key Lab Computat Intelligence & Intellige Beijing Peoples R China;

    Beijing Univ Technol Beijing Key Lab Computat Intelligence & Intellige Beijing Peoples R China|Beijing Univ Technol Innovat Ctr Elect Vehicles Beijing Beijing Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Unmanned aerial vehicle (UAV) imagery; Object detection; Coarse-to-fine; Lightweight convolutional neural network (CNN); Deep motion saliency;

    机译:无人驾驶飞行器(UAV)图像;物体检测;粗致细腻的;轻量级卷积神经网络(CNN);深运动显着性;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号