首页> 外文期刊>Journal of computational science >Evidential link prediction in social networks based on structural and social information
【24h】

Evidential link prediction in social networks based on structural and social information

机译:基于结构和社交信息的社交网络中的证据链接预测

获取原文
获取原文并翻译 | 示例

摘要

Social networks are large systems that depict linkage between millions of social entities. The study of their patterning and evolving is one of the major research areas in social network analysis and network mining. It includes the prediction of future associations between unlinked nodes, known as the link prediction problem. Traditional methods are designed to deal with social networks under a certain framework. Yet, data of such networks are usually noisy, missing and prone to observation errors causing distortions and likely inaccurate results. This paper addresses the link prediction problem under the uncertain framework of the belief function theory, an appealing framework for reasoning under uncertainty that permits to represent, quantify and manage imperfect evidence. Firstly, a new graph based model for social networks that handles uncertainties in links' structures is introduced. Secondly, a novel method for the prediction of new links that makes use of the belief functions tools is proposed. It takes advantage of both neighborhood and common groups information in social networks in order to predict new connections. The performance of the new method is validated on real world social networks. Experiments show that our approach performs better than traditional methods based on structural information. (C) 2018 Elsevier B.V. All rights reserved.
机译:社交网络是描述数百万个社交实体之间联系的大型系统。对它们的模式和演化的研究是社会网络分析和网络挖掘的主要研究领域之一。它包括对未链接节点之间未来关联的预测,称为链接预测问题。传统方法旨在在特定框架下处理社交网络。然而,这样的网络的数据通常是嘈杂的,丢失的并且易于出现观察误差,从而导致失真和可能不准确的结果。本文讨论了信念函数理论的不确定框架下的链接预测问题,该框架是一个不确定的推理框架,可以表示,量化和管理不完善的证据。首先,介绍了一种新的基于图的社交网络模型,该模型可以处理链接结构中的不确定性。其次,提出了一种利用信念函数工具的新链接预测新方法。它利用社交网络中的邻域信息和公共群体信息来预测新的联系。新方法的性能在现实世界的社交网络上得到了验证。实验表明,我们的方法比基于结构信息的传统方法性能更好。 (C)2018 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号