首页> 外文期刊>New Generation Computing >Link Prediction based on Structural Properties of Online Social Networks
【24h】

Link Prediction based on Structural Properties of Online Social Networks

机译:基于在线社交网络结构特性的链接预测

获取原文
获取原文并翻译 | 示例

摘要

Question-Answering Bulletin Boards (QABB), such as Ya- hoo! Answers and Windows Live QnA, are gaining popularity recently. Questions are submitted on QABB and let somebody in the internet answer them. Communications on QABB connect users, and the overall connections can be regarded as a social network. If the evolution of social networks can be predicted, it is quite useful for encouraging communications among users. Link prediction on QABB can be used for recommendation to potential answerers. Previous approaches for link prediction based on structural properties do not take weights of links into account. This paper describes an improved method for predicting links based on weighted proximity measures of social networks. The method is based on an assumption that proximities between nodes can be estimated better by using both graph proximity measures and the weights of existing links in a social network. In order to show the effectiveness of our method, the data of Yahoo! Chiebukuro (Japanese Yahoo! Answers) are used for our experiments. The results show that our method outperforms previous approaches, especially when target social networks are sufficiently dense.
机译:问题解答公告板(QABB),例如Yahoo!答案和Windows Live QnA最近越来越流行。问题是通过QABB提交的,并允许互联网上的其他人回答。 QABB上的通信连接用户,整体连接可以视为社交网络。如果可以预测社交网络的发展,则对于鼓励用户之间的交流非常有用。 QABB上的链接预测可用于推荐给潜在的应答者。基于结构特性的链接预测的先前方法没有考虑链接的权重。本文介绍了一种基于社交网络的加权邻近度量来预测链接的改进方法。该方法基于这样的假设:可以通过使用图接近度度量和社交网络中现有链接的权重来更好地估计节点之间的邻近度。为了显示我们方法的有效性,Yahoo!的数据Chiebukuro(日语Yahoo!答案)用于我们的实验。结果表明,我们的方法优于以前的方法,尤其是当目标社交网络足够密集时。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号