首页> 外文期刊>Journal of Computational Neuroscience >New class of reduced computationally efficient neuronal models for large-scale simulations of brain dynamics
【24h】

New class of reduced computationally efficient neuronal models for large-scale simulations of brain dynamics

机译:用于大规模模拟脑动力学的新型减少计算效率的神经元模型

获取原文
获取原文并翻译 | 示例

摘要

During slow-wave sleep, brain electrical activity is dominated by the slow (< 1 Hz) electroencephalogram (EEG) oscillations characterized by the periodic transitions between active (or Up) and silent (or Down) states in the membrane voltage of the cortical and thalamic neurons. Sleep slow oscillation is believed to play critical role in consolidation of recent memories. Past computational studies, based on the Hodgkin-Huxley type neuronal models, revealed possible intracellular and network mechanisms of the neuronal activity during sleep, however, they failed to explore the large-scale cortical network dynamics depending on collective behavior in the large populations of neurons. In this new study, we developed a novel class of reduced discrete time spiking neuron models for large-scale network simulations of wake and sleep dynamics. In addition to the spiking mechanism, the new model implemented nonlinearities capturing effects of the leak current, the Ca2+ dependent K+ current and the persistent Na+ current that were found to be critical for transitions between Up and Down states of the slow oscillation. We applied the new model to study large-scale two-dimensional cortical network activity during slow-wave sleep. Our study explained traveling wave dynamics and characteristic synchronization properties of transitions between Up and Down states of the slow oscillation as observed in vivo in recordings from cats. We further predict a critical role of synaptic noise and slow adaptive currents for spike sequence replay as found during sleep related memory consolidation.
机译:在慢波睡眠期间,大脑的电活动以缓慢的(<1 Hz)脑电图(EEG)振荡为主导,其特征是皮层和膜的膜电压在活动(或向上)和无声(或向下)状态之间的周期性过渡。丘脑神经元。睡眠慢振荡被认为在巩固近期记忆中起关键作用。过去基于Hodgkin-Huxley型神经元模型的计算研究揭示了睡眠期间神经元活动的可能的细胞内和网络机制,但是,他们未能根据大量神经元群体的集体行为来探索大规模的皮质网络动力学。 。在这项新研究中,我们为唤醒和睡眠动力学的大规模网络仿真开发了一类新型的减少离散离散时间尖峰神经元模型。除了峰值机制外,新模型还实现了非线性机制,可以捕获泄漏电流,依赖于Ca2 +的K +电流和持续的Na +电流的非线性效应,这些效应对于缓慢振荡的向上和向下状态之间的转换至关重要。我们将新模型应用到慢波睡眠期间研究大规模二维皮质网络活动。我们的研究解释了在猫的录音中在体内观察到的慢振荡的上下状态之间转换的行波动力学和特征同步特性。我们进一步预测突触噪声和缓慢的自适应电流对于与睡眠相关的记忆整合过程中发现的尖峰序列重播的关键作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号